Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 1;101(5):1184–1194. doi: 10.1172/JCI1461

Fibrinogen deficiency is compatible with the development of atherosclerosis in mice.

Q Xiao 1, M J Danton 1, D P Witte 1, M C Kowala 1, M T Valentine 1, J L Degen 1
PMCID: PMC508671  PMID: 9486990

Abstract

A critical role of the coagulation system in the development of atherosclerosis has been frequently postulated based on a variety of indirect observations, including the expression of procoagulants and fibrinolytic factors within atherosclerotic vessels, the presence of substantial amounts of fibrin(ogen) and fibrin degradation products within intimal lesions, the cellular infiltration and assimilation of mural thrombi into developing plaques, and the identification of high plasma fibrinogen (Fib) levels as an independent risk factor for the development of ischemic heart disease. To directly examine the role of fibrin(ogen) in atherogenesis, Fib-deficient mice were crossed to atherosclerosis-prone apolipoprotein E (apo E)-deficient mice. Both apo E-/- and apo E-/-/Fib-/- mice developed lesions throughout the entire aortic tree, ranging in appearance from simple fatty streaks to complex fibrous plaques. Furthermore, remarkably little difference in lesion size and complexity was observed within the aortae of age- and gender-matched apo E-/- and apo E-/-/Fib-/- mice. These results indicate that the contribution of fibrin(ogen) to intimal mass and local cell adhesion, migration, and proliferation is not strictly required for the development of advanced atherosclerotic disease in mice with a severe defect in lipid metabolism.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bini A., Fenoglio J. J., Jr, Mesa-Tejada R., Kudryk B., Kaplan K. L. Identification and distribution of fibrinogen, fibrin, and fibrin(ogen) degradation products in atherosclerosis. Use of monoclonal antibodies. Arteriosclerosis. 1989 Jan-Feb;9(1):109–121. doi: 10.1161/01.atv.9.1.109. [DOI] [PubMed] [Google Scholar]
  2. Bini A., Kudryk B. J. Fibrinogen in human atherosclerosis. Ann N Y Acad Sci. 1995 Jan 17;748:461–473. doi: 10.1111/j.1749-6632.1994.tb17342.x. [DOI] [PubMed] [Google Scholar]
  3. Breslow J. L. Mouse models of atherosclerosis. Science. 1996 May 3;272(5262):685–688. doi: 10.1126/science.272.5262.685. [DOI] [PubMed] [Google Scholar]
  4. Bugge T. H., Flick M. J., Daugherty C. C., Degen J. L. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev. 1995 Apr 1;9(7):794–807. doi: 10.1101/gad.9.7.794. [DOI] [PubMed] [Google Scholar]
  5. Bugge T. H., Kombrinck K. W., Flick M. J., Daugherty C. C., Danton M. J., Degen J. L. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell. 1996 Nov 15;87(4):709–719. doi: 10.1016/s0092-8674(00)81390-2. [DOI] [PubMed] [Google Scholar]
  6. Carmeliet P., Moons L., Ploplis V., Plow E., Collen D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest. 1997 Jan 15;99(2):200–208. doi: 10.1172/JCI119148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carmeliet P., Schoonjans L., Kieckens L., Ream B., Degen J., Bronson R., De Vos R., van den Oord J. J., Collen D., Mulligan R. C. Physiological consequences of loss of plasminogen activator gene function in mice. Nature. 1994 Mar 31;368(6470):419–424. doi: 10.1038/368419a0. [DOI] [PubMed] [Google Scholar]
  8. Chiesa G., Hobbs H. H., Koschinsky M. L., Lawn R. M., Maika S. D., Hammer R. E. Reconstitution of lipoprotein(a) by infusion of human low density lipoprotein into transgenic mice expressing human apolipoprotein(a). J Biol Chem. 1992 Dec 5;267(34):24369–24374. [PubMed] [Google Scholar]
  9. Ernst E., Resch K. L. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Ann Intern Med. 1993 Jun 15;118(12):956–963. doi: 10.7326/0003-4819-118-12-199306150-00008. [DOI] [PubMed] [Google Scholar]
  10. Falk E., Fernández-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol. 1995 Feb 23;75(6):3B–11B. doi: 10.1016/0002-9149(95)80003-b. [DOI] [PubMed] [Google Scholar]
  11. Fuster V., Badimon L., Badimon J. J., Chesebro J. H. The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med. 1992 Jan 23;326(4):242–250. doi: 10.1056/NEJM199201233260406. [DOI] [PubMed] [Google Scholar]
  12. Grainger D. J., Kemp P. R., Liu A. C., Lawn R. M., Metcalfe J. C. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature. 1994 Aug 11;370(6489):460–462. doi: 10.1038/370460a0. [DOI] [PubMed] [Google Scholar]
  13. Grainger D. J., Wakefield L., Bethell H. W., Farndale R. W., Metcalfe J. C. Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat Med. 1995 Sep;1(9):932–937. doi: 10.1038/nm0995-932. [DOI] [PubMed] [Google Scholar]
  14. Hajjar K. A., Gavish D., Breslow J. L., Nachman R. L. Lipoprotein(a) modulation of endothelial cell surface fibrinolysis and its potential role in atherosclerosis. Nature. 1989 May 25;339(6222):303–305. doi: 10.1038/339303a0. [DOI] [PubMed] [Google Scholar]
  15. Hamsten A., Eriksson P., Karpe F., Silveira A. Relationships of thrombosis and fibrinolysis to atherosclerosis. Curr Opin Lipidol. 1994 Oct;5(5):382–389. doi: 10.1097/00041433-199410000-00011. [DOI] [PubMed] [Google Scholar]
  16. Harpel P. C., Gordon B. R., Parker T. S. Plasmin catalyzes binding of lipoprotein (a) to immobilized fibrinogen and fibrin. Proc Natl Acad Sci U S A. 1989 May;86(10):3847–3851. doi: 10.1073/pnas.86.10.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horiuchi K., Tajima S., Menju M., Yamamoto A. Structure and expression of mouse apolipoprotein E gene. J Biochem. 1989 Jul;106(1):98–103. doi: 10.1093/oxfordjournals.jbchem.a122828. [DOI] [PubMed] [Google Scholar]
  18. Ishibashi S., Goldstein J. L., Brown M. S., Herz J., Burns D. K. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 1994 May;93(5):1885–1893. doi: 10.1172/JCI117179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Katagiri Y., Hiroyama T., Akamatsu N., Suzuki H., Yamazaki H., Tanoue K. Involvement of alpha v beta 3 integrin in mediating fibrin gel retraction. J Biol Chem. 1995 Jan 27;270(4):1785–1790. doi: 10.1074/jbc.270.4.1785. [DOI] [PubMed] [Google Scholar]
  20. Languino L. R., Duperray A., Joganic K. J., Fornaro M., Thornton G. B., Altieri D. C. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1505–1509. doi: 10.1073/pnas.92.5.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Languino L. R., Plescia J., Duperray A., Brian A. A., Plow E. F., Geltosky J. E., Altieri D. C. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell. 1993 Jul 2;73(7):1423–1434. doi: 10.1016/0092-8674(93)90367-y. [DOI] [PubMed] [Google Scholar]
  22. Lawn R. M., Wade D. P., Hammer R. E., Chiesa G., Verstuyft J. G., Rubin E. M. Atherogenesis in transgenic mice expressing human apolipoprotein(a) Nature. 1992 Dec 17;360(6405):670–672. doi: 10.1038/360670a0. [DOI] [PubMed] [Google Scholar]
  23. Lindner V., Fingerle J., Reidy M. A. Mouse model of arterial injury. Circ Res. 1993 Nov;73(5):792–796. doi: 10.1161/01.res.73.5.792. [DOI] [PubMed] [Google Scholar]
  24. Lupu F., Heim D. A., Bachmann F., Hurni M., Kakkar V. V., Kruithof E. K. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1995 Sep;15(9):1444–1455. doi: 10.1161/01.atv.15.9.1444. [DOI] [PubMed] [Google Scholar]
  25. Meade T. W., Mellows S., Brozovic M., Miller G. J., Chakrabarti R. R., North W. R., Haines A. P., Stirling Y., Imeson J. D., Thompson S. G. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet. 1986 Sep 6;2(8506):533–537. doi: 10.1016/s0140-6736(86)90111-x. [DOI] [PubMed] [Google Scholar]
  26. Moran C. S., Campbell J. H., Simmons D. L., Campbell G. R. Human leukemia inhibitory factor inhibits development of experimental atherosclerosis. Arterioscler Thromb. 1994 Aug;14(8):1356–1363. doi: 10.1161/01.atv.14.8.1356. [DOI] [PubMed] [Google Scholar]
  27. Naito M., Nomura H., Iguchi A. Migration of cultured vascular smooth muscle cells into non-crosslinked fibrin gels. Thromb Res. 1996 Oct 15;84(2):129–136. doi: 10.1016/0049-3848(96)00168-5. [DOI] [PubMed] [Google Scholar]
  28. Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
  29. Naski M. C., Shafer J. A. A kinetic model for the alpha-thrombin-catalyzed conversion of plasma levels of fibrinogen to fibrin in the presence of antithrombin III. J Biol Chem. 1991 Jul 15;266(20):13003–13010. [PubMed] [Google Scholar]
  30. Odekon L. E., Blasi F., Rifkin D. B. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-beta to TGF-beta. J Cell Physiol. 1994 Mar;158(3):398–407. doi: 10.1002/jcp.1041580303. [DOI] [PubMed] [Google Scholar]
  31. Paigen B., Morrow A., Holmes P. A., Mitchell D., Williams R. A. Quantitative assessment of atherosclerotic lesions in mice. Atherosclerosis. 1987 Dec;68(3):231–240. doi: 10.1016/0021-9150(87)90202-4. [DOI] [PubMed] [Google Scholar]
  32. Plump A. S., Smith J. D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J. G., Rubin E. M., Breslow J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
  33. Reddick R. L., Zhang S. H., Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb. 1994 Jan;14(1):141–147. doi: 10.1161/01.atv.14.1.141. [DOI] [PubMed] [Google Scholar]
  34. Robbie L. A., Booth N. A., Brown A. J., Bennett B. Inhibitors of fibrinolysis are elevated in atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 1996 Apr;16(4):539–545. doi: 10.1161/01.atv.16.4.539. [DOI] [PubMed] [Google Scholar]
  35. Rouy D., Grailhe P., Nigon F., Chapman J., Anglés-Cano E. Lipoprotein(a) impairs generation of plasmin by fibrin-bound tissue-type plasminogen activator. In vitro studies in a plasma milieu. Arterioscler Thromb. 1991 May-Jun;11(3):629–638. doi: 10.1161/01.atv.11.3.629. [DOI] [PubMed] [Google Scholar]
  36. Scanu A. M., Lawn R. M., Berg K. Lipoprotein(a) and atherosclerosis. Ann Intern Med. 1991 Aug 1;115(3):209–218. doi: 10.7326/0003-4819-115-3-209. [DOI] [PubMed] [Google Scholar]
  37. Schneiderman J., Sawdey M. S., Keeton M. R., Bordin G. M., Bernstein E. F., Dilley R. B., Loskutoff D. J. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6998–7002. doi: 10.1073/pnas.89.15.6998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schwartz C. J., Valente A. J., Kelley J. L., Sprague E. A., Edwards E. H. Thrombosis and the development of atherosclerosis: Rokitansky revisited. Semin Thromb Hemost. 1988 Apr;14(2):189–195. doi: 10.1055/s-2007-1002775. [DOI] [PubMed] [Google Scholar]
  39. Stirk C. M., Kochhar A., Smith E. B., Thompson W. D. Presence of growth-stimulating fibrin degradation products containing fragment E in human atherosclerotic plaques. Atherosclerosis. 1993 Nov;103(2):159–169. doi: 10.1016/0021-9150(93)90259-w. [DOI] [PubMed] [Google Scholar]
  40. Suh T. T., Holmbäck K., Jensen N. J., Daugherty C. C., Small K., Simon D. I., Potter S., Degen J. L. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev. 1995 Aug 15;9(16):2020–2033. doi: 10.1101/gad.9.16.2020. [DOI] [PubMed] [Google Scholar]
  41. Thompson W. D., Smith E. B., Stirk C. M., Marshall F. I., Stout A. J., Kocchar A. Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J Pathol. 1992 Sep;168(1):47–53. doi: 10.1002/path.1711680109. [DOI] [PubMed] [Google Scholar]
  42. Thompson W. D., Smith E. B., Stirk C. M., Wang J. Fibrin degradation products in growth stimulatory extracts of pathological lesions. Blood Coagul Fibrinolysis. 1993 Feb;4(1):113–115. [PubMed] [Google Scholar]
  43. Wilcox J. N., Smith K. M., Schwartz S. M., Gordon D. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2839–2843. doi: 10.1073/pnas.86.8.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Xiao Q., Danton M. J., Witte D. P., Kowala M. C., Valentine M. T., Bugge T. H., Degen J. L. Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10335–10340. doi: 10.1073/pnas.94.19.10335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang S. H., Reddick R. L., Piedrahita J. A., Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468–471. doi: 10.1126/science.1411543. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES