Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 15;101(6):1225–1232. doi: 10.1172/JCI1293

Interaction of genetic deficiency of endothelial nitric oxide, gender, and pregnancy in vascular response to injury in mice.

M Moroi 1, L Zhang 1, T Yasuda 1, R Virmani 1, H K Gold 1, M C Fishman 1, P L Huang 1
PMCID: PMC508676  PMID: 9502763

Abstract

To begin to dissect atherogenesis as a complex genetic disorder affected by genetic makeup and environment, we have (a) generated a reproducible mouse model of neointimal growth; (b) evaluated the effect of disruption of a single gene, endothelial nitric oxide synthase, believed to be central to intimal growth, and (c) examined the modifying effects of gender and pregnancy upon the vascular response. Cuff placement around the femoral artery causes reproducible intimal growth. We assessed the response to injury by quantitative morphometry, measuring the intimal to medial (I/M) volume ratio. In wild-type mice, cuff placement causes pronounced intimal proliferation without affecting the media, resulting in I/M ratios of 31% (SV129 males) and 27% (C57BL/6 males). eNOS mutant male mice have a much greater degree of intimal growth (I/M ratio of 70%). Female mice show less intimal response than do males, although eNOS mutant female mice still have more response than do wild-type females. Most dramatic, however, is the effect of pregnancy, which essentially abolishes the intimal response to injury, even overriding the effect of eNOS mutation. We conclude that eNOS deficiency is a genetic predisposition to intimal proliferation that is enhanced by male gender, and that may be overridden by pregnancy.

Full Text

The Full Text of this article is available as a PDF (831.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akishita M., Ouchi Y., Miyoshi H., Kozaki K., Inoue S., Ishikawa M., Eto M., Toba K., Orimo H. Estrogen inhibits cuff-induced intimal thickening of rat femoral artery: effects on migration and proliferation of vascular smooth muscle cells. Atherosclerosis. 1997 Apr;130(1-2):1–10. doi: 10.1016/s0021-9150(96)06023-6. [DOI] [PubMed] [Google Scholar]
  2. Arthur J. F., Yin Z. L., Young H. M., Dusting G. J. Induction of nitric oxide synthase in the neointima induced by a periarterial collar in rabbits. Arterioscler Thromb Vasc Biol. 1997 Apr;17(4):737–740. doi: 10.1161/01.atv.17.4.737. [DOI] [PubMed] [Google Scholar]
  3. Bath P. M. The effect of nitric oxide-donating vasodilators on monocyte chemotaxis and intracellular cGMP concentrations in vitro. Eur J Clin Pharmacol. 1993;45(1):53–58. doi: 10.1007/BF00315350. [DOI] [PubMed] [Google Scholar]
  4. Booth R. F., Martin J. F., Honey A. C., Hassall D. G., Beesley J. E., Moncada S. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis. 1989 Apr;76(2-3):257–268. doi: 10.1016/0021-9150(89)90109-3. [DOI] [PubMed] [Google Scholar]
  5. Celermajer D. S., Sorensen K. E., Gooch V. M., Spiegelhalter D. J., Miller O. I., Sullivan I. D., Lloyd J. K., Deanfield J. E. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992 Nov 7;340(8828):1111–1115. doi: 10.1016/0140-6736(92)93147-f. [DOI] [PubMed] [Google Scholar]
  6. Davenpeck K. L., Gauthier T. W., Lefer A. M. Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology. 1994 Oct;107(4):1050–1058. doi: 10.1016/0016-5085(94)90229-1. [DOI] [PubMed] [Google Scholar]
  7. De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A., Jr, Shin W. S., Liao J. K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995 Jul;96(1):60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferns G. A., Stewart-Lee A. L., Anggård E. E. Arterial response to mechanical injury: balloon catheter de-endothelialization. Atherosclerosis. 1992 Feb;92(2-3):89–104. doi: 10.1016/0021-9150(92)90268-l. [DOI] [PubMed] [Google Scholar]
  9. Flavahan N. A. Atherosclerosis or lipoprotein-induced endothelial dysfunction. Potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation. 1992 May;85(5):1927–1938. doi: 10.1161/01.cir.85.5.1927. [DOI] [PubMed] [Google Scholar]
  10. Freiman P. C., Mitchell G. G., Heistad D. D., Armstrong M. L., Harrison D. G. Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circ Res. 1986 Jun;58(6):783–789. doi: 10.1161/01.res.58.6.783. [DOI] [PubMed] [Google Scholar]
  11. Gauthier T. W., Davenpeck K. L., Lefer A. M. Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol. 1994 Oct;267(4 Pt 1):G562–G568. doi: 10.1152/ajpgi.1994.267.4.G562. [DOI] [PubMed] [Google Scholar]
  12. Gauthier T. W., Scalia R., Murohara T., Guo J. P., Lefer A. M. Nitric oxide protects against leukocyte-endothelium interactions in the early stages of hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1652–1659. doi: 10.1161/01.atv.15.10.1652. [DOI] [PubMed] [Google Scholar]
  13. Guo J. P., Panday M. M., Consigny P. M., Lefer A. M. Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am J Physiol. 1995 Sep;269(3 Pt 2):H1122–H1131. doi: 10.1152/ajpheart.1995.269.3.H1122. [DOI] [PubMed] [Google Scholar]
  14. Hansson G. K., Geng Y. J., Holm J., Hårdhammar P., Wennmalm A., Jennische E. Arterial smooth muscle cells express nitric oxide synthase in response to endothelial injury. J Exp Med. 1994 Aug 1;180(2):733–738. doi: 10.1084/jem.180.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang P. L., Huang Z., Mashimo H., Bloch K. D., Moskowitz M. A., Bevan J. A., Fishman M. C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995 Sep 21;377(6546):239–242. doi: 10.1038/377239a0. [DOI] [PubMed] [Google Scholar]
  16. Iafrati M. D., Karas R. H., Aronovitz M., Kim S., Sullivan T. R., Jr, Lubahn D. B., O'Donnell T. F., Jr, Korach K. S., Mendelsohn M. E. Estrogen inhibits the vascular injury response in estrogen receptor alpha-deficient mice. Nat Med. 1997 May;3(5):545–548. doi: 10.1038/nm0597-545. [DOI] [PubMed] [Google Scholar]
  17. King G. L., Shiba T., Oliver J., Inoguchi T., Bursell S. E. Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med. 1994;45:179–188. doi: 10.1146/annurev.med.45.1.179. [DOI] [PubMed] [Google Scholar]
  18. Kockx M. M., De Meyer G. R., Andries L. J., Bult H., Jacob W. A., Herman A. G. The endothelium during cuff-induced neointima formation in the rabbit carotid artery. Arterioscler Thromb. 1993 Dec;13(12):1874–1884. doi: 10.1161/01.atv.13.12.1874. [DOI] [PubMed] [Google Scholar]
  19. Lefer A. M., Ma X. L. Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arterioscler Thromb. 1993 Jun;13(6):771–776. doi: 10.1161/01.atv.13.6.771. [DOI] [PubMed] [Google Scholar]
  20. Linder L., Kiowski W., Bühler F. R., Lüscher T. F. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation. 1990 Jun;81(6):1762–1767. doi: 10.1161/01.cir.81.6.1762. [DOI] [PubMed] [Google Scholar]
  21. Lindner V., Fingerle J., Reidy M. A. Mouse model of arterial injury. Circ Res. 1993 Nov;73(5):792–796. doi: 10.1161/01.res.73.5.792. [DOI] [PubMed] [Google Scholar]
  22. Mooradian D. L., Hutsell T. C., Keefer L. K. Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc Pharmacol. 1995 Apr;25(4):674–678. [PubMed] [Google Scholar]
  23. Radomski M. W., Palmer R. M., Moncada S. Modulation of platelet aggregation by an L-arginine-nitric oxide pathway. Trends Pharmacol Sci. 1991 Mar;12(3):87–88. doi: 10.1016/0165-6147(91)90510-y. [DOI] [PubMed] [Google Scholar]
  24. Sullivan T. R., Jr, Karas R. H., Aronovitz M., Faller G. T., Ziar J. P., Smith J. J., O'Donnell T. F., Jr, Mendelsohn M. E. Estrogen inhibits the response-to-injury in a mouse carotid artery model. J Clin Invest. 1995 Nov;96(5):2482–2488. doi: 10.1172/JCI118307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yong A. C., Townley G., Boyd G. W. Haemodynamic changes in the Moncada model of atherosclerosis. Clin Exp Pharmacol Physiol. 1992 May;19(5):339–342. doi: 10.1111/j.1440-1681.1992.tb00467.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES