Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 15;101(6):1233–1242. doi: 10.1172/JCI993

Intracellular calcium homeostasis in human primary muscle cells from malignant hyperthermia-susceptible and normal individuals. Effect Of overexpression of recombinant wild-type and Arg163Cys mutated ryanodine receptors.

K Censier 1, A Urwyler 1, F Zorzato 1, S Treves 1
PMCID: PMC508677  PMID: 9502764

Abstract

Malignant hyperthermia (MH) is a hypermetabolic disease triggered by volatile anesthetics and succinylcholine in genetically predisposed individuals. Nine point mutations in the skeletal muscle ryanodine receptor (RYR) gene have so far been identified and shown to correlate with the MH-susceptible phenotype, yet direct evidence linking abnormal Ca2+ homeostasis to mutations in the RYR1 cDNA has been obtained for few mutations. In this report, we show for the first time that cultured human skeletal muscle cells derived from MH-susceptible individuals exhibit a half-maximal halothane concentration causing an increase in intracellular Ca2+ concentration which is twofold lower than that of cells derived from MH-negative individuals. We also present evidence demonstrating that overexpression of wild-type RYR1 in cells obtained from MH-susceptible individuals does not restore the MH-negative phenotype, as far as Ca2+ transients elicited by halothane are concerned; on the other hand, overexpression of a mutated RYR1 Arg163Cys Ca2+ channel in muscle cells obtained from MH-negative individuals conveys hypersensitivity to halothane. Finally, our results show that the resting Ca2+ concentration of cultured skeletal muscle cells from MH-negative and MH-susceptible individuals is not significantly different.

Full Text

The Full Text of this article is available as a PDF (508.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Westerblad H. The effects of caffeine on intracellular calcium, force and the rate of relaxation of mouse skeletal muscle. J Physiol. 1995 Sep 1;487(Pt 2):331–342. doi: 10.1113/jphysiol.1995.sp020883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. E., Rankin L. L., Greene E. A., Boxhorn L. K., Johnson S. E., Taylor R. G., Pierce P. R. Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J Cell Physiol. 1991 Dec;149(3):525–535. doi: 10.1002/jcp.1041490323. [DOI] [PubMed] [Google Scholar]
  3. Bassani J. W., Bassani R. A., Bers D. M. Calibration of indo-1 and resting intracellular [Ca]i in intact rabbit cardiac myocytes. Biophys J. 1995 Apr;68(4):1453–1460. doi: 10.1016/S0006-3495(95)80318-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benders A. A., Oosterhof A., Wevers R. A., Veerkamp J. H. Excitation-contraction coupling of cultured human skeletal muscle cells and the relation between basal cytosolic Ca2+ and excitability. Cell Calcium. 1997 Jan;21(1):81–91. doi: 10.1016/s0143-4160(97)90099-3. [DOI] [PubMed] [Google Scholar]
  5. Blanck T. J., Gruener R., Suffecool S. L., Thompson M. Calcium uptake by isolated sarcoplasmic reticulum: examination of halothane inhibition, pH dependence, and Ca2+ dependence of normal and malignant hyperthermic human muscle. Anesth Analg. 1981 Jul;60(7):492–498. [PubMed] [Google Scholar]
  6. Blau H. M., Webster C. Isolation and characterization of human muscle cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623–5627. doi: 10.1073/pnas.78.9.5623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Deufel T., Golla A., Iles D., Meindl A., Meitinger T., Schindelhauer D., DeVries A., Pongratz D., MacLennan D. H., Johnson K. J. Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Am J Hum Genet. 1992 Jun;50(6):1151–1161. [PMC free article] [PubMed] [Google Scholar]
  10. Fleischer S., Inui M. Biochemistry and biophysics of excitation-contraction coupling. Annu Rev Biophys Biophys Chem. 1989;18:333–364. doi: 10.1146/annurev.bb.18.060189.002001. [DOI] [PubMed] [Google Scholar]
  11. Fujii J., Otsu K., Zorzato F., de Leon S., Khanna V. K., Weiler J. E., O'Brien P. J., MacLennan D. H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991 Jul 26;253(5018):448–451. doi: 10.1126/science.1862346. [DOI] [PubMed] [Google Scholar]
  12. Gillard E. F., Otsu K., Fujii J., Khanna V. K., de Leon S., Derdemezi J., Britt B. A., Duff C. L., Worton R. G., MacLennan D. H. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics. 1991 Nov;11(3):751–755. doi: 10.1016/0888-7543(91)90084-r. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Iaizzo P. A., Klein W., Lehmann-Horn F. Fura-2 detected myoplasmic calcium and its correlation with contracture force in skeletal muscle from normal and malignant hyperthermia susceptible pigs. Pflugers Arch. 1988 Jun;411(6):648–653. doi: 10.1007/BF00580861. [DOI] [PubMed] [Google Scholar]
  15. Iles D. E., Lehmann-Horn F., Scherer S. W., Tsui L. C., Olde Weghuis D., Suijkerbuijk R. F., Heytens L., Mikala G., Schwartz A., Ellis F. R. Localization of the gene encoding the alpha 2/delta-subunits of the L-type voltage-dependent calcium channel to chromosome 7q and analysis of the segregation of flanking markers in malignant hyperthermia susceptible families. Hum Mol Genet. 1994 Jun;3(6):969–975. doi: 10.1093/hmg/3.6.969. [DOI] [PubMed] [Google Scholar]
  16. Keating K. E., Giblin L., Lynch P. J., Quane K. A., Lehane M., Heffron J. J., McCarthy T. V. Detection of a novel mutation in the ryanodine receptor gene in an Irish malignant hyperthermia pedigree: correlation of the IVCT response with the affected and unaffected haplotypes. J Med Genet. 1997 Apr;34(4):291–296. doi: 10.1136/jmg.34.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keating K. E., Quane K. A., Manning B. M., Lehane M., Hartung E., Censier K., Urwyler A., Klausnitzer M., Muller C. R., Heffron J. J. Detection of a novel RYR1 mutation in four malignant hyperthermia pedigrees. Hum Mol Genet. 1994 Oct;3(10):1855–1858. doi: 10.1093/hmg/3.10.1855. [DOI] [PubMed] [Google Scholar]
  18. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  19. Levitt R. C., Nouri N., Jedlicka A. E., McKusick V. A., Marks A. R., Shutack J. G., Fletcher J. E., Rosenberg H., Meyers D. A. Evidence for genetic heterogeneity in malignant hyperthermia susceptibility. Genomics. 1991 Nov;11(3):543–547. doi: 10.1016/0888-7543(91)90061-i. [DOI] [PubMed] [Google Scholar]
  20. Levitt R. C., Olckers A., Meyers S., Fletcher J. E., Rosenberg H., Isaacs H., Meyers D. A. Evidence for the localization of a malignant hyperthermia susceptibility locus (MHS2) to human chromosome 17q. Genomics. 1992 Nov;14(3):562–566. doi: 10.1016/s0888-7543(05)80152-1. [DOI] [PubMed] [Google Scholar]
  21. Lopez J. R., Gerardi A., Lopez M. J., Allen P. D. Effects of dantrolene on myoplasmic free [Ca2+] measured in vivo in patients susceptible to malignant hyperthermia. Anesthesiology. 1992 May;76(5):711–719. doi: 10.1097/00000542-199205000-00008. [DOI] [PubMed] [Google Scholar]
  22. Lynch P. J., Krivosic-Horber R., Reyford H., Monnier N., Quane K., Adnet P., Haudecoeur G., Krivosic I., McCarthy T., Lunardi J. Identification of heterozygous and homozygous individuals with the novel RYR1 mutation Cys35Arg in a large kindred. Anesthesiology. 1997 Mar;86(3):620–626. doi: 10.1097/00000542-199703000-00014. [DOI] [PubMed] [Google Scholar]
  23. López J. R., Alamo L., Caputo C., Wikinski J., Ledezma D. Intracellular ionized calcium concentration in muscles from humans with malignant hyperthermia. Muscle Nerve. 1985 Jun;8(5):355–358. doi: 10.1002/mus.880080502. [DOI] [PubMed] [Google Scholar]
  24. MacLennan D. H., Duff C., Zorzato F., Fujii J., Phillips M., Korneluk R. G., Frodis W., Britt B. A., Worton R. G. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature. 1990 Feb 8;343(6258):559–561. doi: 10.1038/343559a0. [DOI] [PubMed] [Google Scholar]
  25. MacLennan D. H., Phillips M. S. Malignant hyperthermia. Science. 1992 May 8;256(5058):789–794. doi: 10.1126/science.1589759. [DOI] [PubMed] [Google Scholar]
  26. McCarthy T. V., Healy J. M., Heffron J. J., Lehane M., Deufel T., Lehmann-Horn F., Farrall M., Johnson K. Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12-13.2. Nature. 1990 Feb 8;343(6258):562–564. doi: 10.1038/343562a0. [DOI] [PubMed] [Google Scholar]
  27. Mickelson J. R., Gallant E. M., Litterer L. A., Johnson K. M., Rempel W. E., Louis C. F. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J Biol Chem. 1988 Jul 5;263(19):9310–9315. [PubMed] [Google Scholar]
  28. Mickelson J. R., Louis C. F. Malignant hyperthermia: excitation-contraction coupling, Ca2+ release channel, and cell Ca2+ regulation defects. Physiol Rev. 1996 Apr;76(2):537–592. doi: 10.1152/physrev.1996.76.2.537. [DOI] [PubMed] [Google Scholar]
  29. Otsu K., Nishida K., Kimura Y., Kuzuya T., Hori M., Kamada T., Tada M. The point mutation Arg615-->Cys in the Ca2+ release channel of skeletal sarcoplasmic reticulum is responsible for hypersensitivity to caffeine and halothane in malignant hyperthermia. J Biol Chem. 1994 Apr 1;269(13):9413–9415. [PubMed] [Google Scholar]
  30. Otsu K., Phillips M. S., Khanna V. K., de Leon S., MacLennan D. H. Refinement of diagnostic assays for a probable causal mutation for porcine and human malignant hyperthermia. Genomics. 1992 Jul;13(3):835–837. doi: 10.1016/0888-7543(92)90163-m. [DOI] [PubMed] [Google Scholar]
  31. Quane K. A., Healy J. M., Keating K. E., Manning B. M., Couch F. J., Palmucci L. M., Doriguzzi C., Fagerlund T. H., Berg K., Ording H. Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat Genet. 1993 Sep;5(1):51–55. doi: 10.1038/ng0993-51. [DOI] [PubMed] [Google Scholar]
  32. Quane K. A., Keating K. E., Manning B. M., Healy J. M., Monsieurs K., Heffron J. J., Lehane M., Heytens L., Krivosic-Horber R., Adnet P. Detection of a novel common mutation in the ryanodine receptor gene in malignant hyperthermia: implications for diagnosis and heterogeneity studies. Hum Mol Genet. 1994 Mar;3(3):471–476. doi: 10.1093/hmg/3.3.471. [DOI] [PubMed] [Google Scholar]
  33. Richter M., Schleithoff L., Deufel T., Lehmann-Horn F., Herrmann-Frank A. Functional characterization of a distinct ryanodine receptor mutation in human malignant hyperthermia-susceptible muscle. J Biol Chem. 1997 Feb 21;272(8):5256–5260. doi: 10.1074/jbc.272.8.5256. [DOI] [PubMed] [Google Scholar]
  34. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shomer N. H., Mickelson J. R., Louis C. F. Caffeine stimulation of malignant hyperthermia-susceptible sarcoplasmic reticulum Ca2+ release channel. Am J Physiol. 1994 Nov;267(5 Pt 1):C1253–C1261. doi: 10.1152/ajpcell.1994.267.5.C1253. [DOI] [PubMed] [Google Scholar]
  37. Smith J. S., Coronado R., Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986 Nov;88(5):573–588. doi: 10.1085/jgp.88.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sudbrak R., Procaccio V., Klausnitzer M., Curran J. L., Monsieurs K., van Broeckhoven C., Ellis R., Heyetens L., Hartung E. J., Kozak-Ribbens G. Mapping of a further malignant hyperthermia susceptibility locus to chromosome 3q13.1. Am J Hum Genet. 1995 Mar;56(3):684–691. [PMC free article] [PubMed] [Google Scholar]
  39. Sutko J. L., Airey J. A. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev. 1996 Oct;76(4):1027–1071. doi: 10.1152/physrev.1996.76.4.1027. [DOI] [PubMed] [Google Scholar]
  40. Treves S., Larini F., Menegazzi P., Steinberg T. H., Koval M., Vilsen B., Andersen J. P., Zorzato F. Alteration of intracellular Ca2+ transients in COS-7 cells transfected with the cDNA encoding skeletal-muscle ryanodine receptor carrying a mutation associated with malignant hyperthermia. Biochem J. 1994 Aug 1;301(Pt 3):661–665. doi: 10.1042/bj3010661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Urwyler A., Censier K., Kaufmann M. A., Drewe J. Genetic effects on the variability of the halothane and caffeine muscle contracture tests. Anesthesiology. 1994 Jun;80(6):1287–1295. doi: 10.1097/00000542-199406000-00016. [DOI] [PubMed] [Google Scholar]
  42. Valdivia H. H., Hogan K., Coronado R. Altered binding site for Ca2+ in the ryanodine receptor of human malignant hyperthermia. Am J Physiol. 1991 Aug;261(2 Pt 1):C237–C245. doi: 10.1152/ajpcell.1991.261.2.C237. [DOI] [PubMed] [Google Scholar]
  43. Westerblad H., Allen D. G. Intracellular calibration of the calcium indicator indo-1 in isolated fibers of Xenopus muscle. Biophys J. 1996 Aug;71(2):908–917. doi: 10.1016/S0006-3495(96)79294-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yasin R., Van Beers G., Nurse K. C., Al-Ani S., Landon D. N., Thompson E. J. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J Neurol Sci. 1977 Jul;32(3):347–360. doi: 10.1016/0022-510x(77)90018-1. [DOI] [PubMed] [Google Scholar]
  45. Zuurveld J. G., Oosterhof A., Veerkamp J. H., van Moerkerk H. T. Oxidative metabolism of cultured human skeletal muscle cells in comparison with biopsy material. Biochim Biophys Acta. 1985 Jan 18;844(1):1–8. doi: 10.1016/0167-4889(85)90226-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES