Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 15;101(6):1243–1253. doi: 10.1172/JCI1249

Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion.

P J Schultheis 1, L L Clarke 1, P Meneton 1, M Harline 1, G P Boivin 1, G Stemmermann 1, J J Duffy 1, T Doetschman 1, M L Miller 1, G E Shull 1
PMCID: PMC508678  PMID: 9502765

Abstract

Multiple isoforms of the Na+/H+ exchanger (NHE) are expressed at high levels in gastric epithelium, but the physiological role of individual isoforms is unclear. To study the function of NHE2, which is expressed in mucous, zymogenic, and parietal cells, we prepared mice with a null mutation in the NHE2 gene. Homozygous null mutants exhibit no overt disease phenotype, but the cellular composition of the oxyntic mucosa of the gastric corpus is altered, with parietal and zymogenic cells reduced markedly in number. Net acid secretion in null mutants is reduced slightly relative to wild-type levels just before weaning and is abolished in adult animals. Although mature parietal cells are observed, and appear morphologically to be engaged in active acid secretion, many of the parietal cells are in various stages of degeneration. These results indicate that NHE2 is not required for acid secretion by the parietal cell, but is essential for its long-term viability. This suggests that the unique sensitivity of NHE2 to inhibition by extracellular H+, which would allow upregulation of its activity by the increased interstitial alkalinity that accompanies acid secretion, might enable this isoform to play a specialized role in maintaining the long-term viability of the parietal cell.

Full Text

The Full Text of this article is available as a PDF (796.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Flemström G., Garner A., Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993 Oct;73(4):823–857. doi: 10.1152/physrev.1993.73.4.823. [DOI] [PubMed] [Google Scholar]
  2. Bookstein C., Musch M. W., DePaoli A., Xie Y., Villereal M., Rao M. C., Chang E. B. A unique sodium-hydrogen exchange isoform (NHE-4) of the inner medulla of the rat kidney is induced by hyperosmolarity. J Biol Chem. 1994 Nov 25;269(47):29704–29709. [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cox G. A., Lutz C. M., Yang C. L., Biemesderfer D., Bronson R. T., Fu A., Aronson P. S., Noebels J. L., Frankel W. N. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell. 1997 Oct 3;91(1):139–148. doi: 10.1016/s0092-8674(01)80016-7. [DOI] [PubMed] [Google Scholar]
  5. Gannon B., Browning J., O'Brien P., Rogers P. Mucosal microvascular architecture of the fundus and body of human stomach. Gastroenterology. 1984 May;86(5 Pt 1):866–875. [PubMed] [Google Scholar]
  6. Gannon B., Browning J., O'Brien P. The microvascular architecture of the glandular mucosa of rat stomach. J Anat. 1982 Dec;135(Pt 4):667–683. [PMC free article] [PubMed] [Google Scholar]
  7. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glauser M., Bauerfeind P., Feil W., Riegler M., Fraser R., Blum A. L. Metabolic base production and mucosal vulnerability during acid inhibition in a mammalian stomach in vitro. Dig Dis Sci. 1996 May;41(5):964–971. doi: 10.1007/BF02091538. [DOI] [PubMed] [Google Scholar]
  9. Hoogerwerf W. A., Tsao S. C., Devuyst O., Levine S. A., Yun C. H., Yip J. W., Cohen M. E., Wilson P. D., Lazenby A. J., Tse C. M. NHE2 and NHE3 are human and rabbit intestinal brush-border proteins. Am J Physiol. 1996 Jan;270(1 Pt 1):G29–G41. doi: 10.1152/ajpgi.1996.270.1.G29. [DOI] [PubMed] [Google Scholar]
  10. Kaneko K., Guth P. H., Kaunitz J. D. Na+/H+ exchange regulates intracellular pH of rat gastric surface cells in vivo. Pflugers Arch. 1992 Jul;421(4):322–328. doi: 10.1007/BF00374219. [DOI] [PubMed] [Google Scholar]
  11. Kapus A., Grinstein S., Wasan S., Kandasamy R., Orlowski J. Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J Biol Chem. 1994 Sep 23;269(38):23544–23552. [PubMed] [Google Scholar]
  12. Karam S. M. Dynamics of epithelial cells in the corpus of the mouse stomach. IV. Bidirectional migration of parietal cells ending in their gradual degeneration and loss. Anat Rec. 1993 Jun;236(2):314–332. doi: 10.1002/ar.1092360205. [DOI] [PubMed] [Google Scholar]
  13. Karam S. M., Forte J. G. Inhibiting gastric H(+)-K(+)-ATPase activity by omeprazole promotes degeneration and production of parietal cells. Am J Physiol. 1994 Apr;266(4 Pt 1):G745–G758. doi: 10.1152/ajpgi.1994.266.4.G745. [DOI] [PubMed] [Google Scholar]
  14. Kivilaakso E., Fromm D., Silen W. Effect of the acid secretory state on intramural pH of rabbit gastric mucosa. Gastroenterology. 1978 Oct;75(4):641–648. [PubMed] [Google Scholar]
  15. Krump E., Nikitas K., Grinstein S. Induction of tyrosine phosphorylation and Na+/H+ exchanger activation during shrinkage of human neutrophils. J Biol Chem. 1997 Jul 11;272(28):17303–17311. doi: 10.1074/jbc.272.28.17303. [DOI] [PubMed] [Google Scholar]
  16. Li Q., Karam S. M., Gordon J. I. Diphtheria toxin-mediated ablation of parietal cells in the stomach of transgenic mice. J Biol Chem. 1996 Feb 16;271(7):3671–3676. [PubMed] [Google Scholar]
  17. Li Q., Karam S. M., Gordon J. I. Diphtheria toxin-mediated ablation of parietal cells in the stomach of transgenic mice. J Biol Chem. 1996 Feb 16;271(7):3671–3676. [PubMed] [Google Scholar]
  18. Lytle C. Activation of the avian erythrocyte Na-K-Cl cotransport protein by cell shrinkage, cAMP, fluoride, and calyculin-A involves phosphorylation at common sites. J Biol Chem. 1997 Jun 13;272(24):15069–15077. doi: 10.1074/jbc.272.24.15069. [DOI] [PubMed] [Google Scholar]
  19. Muallem S., Blissard D., Cragoe E. J., Jr, Sachs G. Activation of the Na+/H+ and Cl-/HCO3- exchange by stimulation of acid secretion in the parietal cell. J Biol Chem. 1988 Oct 15;263(29):14703–14711. [PubMed] [Google Scholar]
  20. Muallem S., Burnham C., Blissard D., Berglindh T., Sachs G. Electrolyte transport across the basolateral membrane of the parietal cells. J Biol Chem. 1985 Jun 10;260(11):6641–6653. [PubMed] [Google Scholar]
  21. Nader M., Lamprecht G., Classen M., Seidler U. Different regulation by pHi and osmolarity of the rabbit ileum brush-border and parietal cell basolateral anion exchanger. J Physiol. 1994 Dec 15;481(Pt 3):605–615. doi: 10.1113/jphysiol.1994.sp020467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orlowski J. Heterologous expression and functional properties of amiloride high affinity (NHE-1) and low affinity (NHE-3) isoforms of the rat Na/H exchanger. J Biol Chem. 1993 Aug 5;268(22):16369–16377. [PubMed] [Google Scholar]
  23. Paradiso A. M., Tsien R. Y., Machen T. E. Digital image processing of intracellular pH in gastric oxyntic and chief cells. 1987 Jan 29-Feb 4Nature. 325(6103):447–450. doi: 10.1038/325447a0. [DOI] [PubMed] [Google Scholar]
  24. Schade C., Flemström G., Holm L. Hydrogen ion concentration in the mucus layer on top of acid-stimulated and -inhibited rat gastric mucosa. Gastroenterology. 1994 Jul;107(1):180–188. doi: 10.1016/0016-5085(94)90075-2. [DOI] [PubMed] [Google Scholar]
  25. Seidler U., Carter K., Ito S., Silen W. Effect of CO2 on pHi in rabbit parietal, chief, and surface cells. Am J Physiol. 1989 Mar;256(3 Pt 1):G466–G475. doi: 10.1152/ajpgi.1989.256.3.G466. [DOI] [PubMed] [Google Scholar]
  26. Smith P., O'Brien P., Fromm D., Silen W. Secretory state of gastric mucosa and resistance to injury by exogenous acid. Am J Surg. 1977 Jan;133(1):81–85. doi: 10.1016/0002-9610(77)90198-2. [DOI] [PubMed] [Google Scholar]
  27. Soleimani M., Singh G., Bizal G. L., Gullans S. R., McAteer J. A. Na+/H+ exchanger isoforms NHE-2 and NHE-1 in inner medullary collecting duct cells. Expression, functional localization, and differential regulation. J Biol Chem. 1994 Nov 11;269(45):27973–27978. [PubMed] [Google Scholar]
  28. Soybel D. I., Gullans S. R., Maxwell F., Delpire E. Role of basolateral Na(+)-K(+)-Cl- cotransport in HCl secretion by amphibian gastric mucosa. Am J Physiol. 1995 Jul;269(1 Pt 1):C242–C249. doi: 10.1152/ajpcell.1995.269.1.C242. [DOI] [PubMed] [Google Scholar]
  29. Starlinger M., Jakesz R., Matthews J. B., Yoon C., Schiessel R. The relative importance of HCO3- and blood flow in the protection of rat gastric mucosa during shock. Gastroenterology. 1981 Oct;81(4):732–735. [PubMed] [Google Scholar]
  30. Starlinger M., Schiessel R. Bicarbonate (HCO3) delivery to the gastroduodenal mucosa by the blood: its importance for mucosal integrity. Gut. 1988 May;29(5):647–654. doi: 10.1136/gut.29.5.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stechschulte D. J., Jr, Morris D. C., Jilka R. L., Stechschulte D. J., Dileepan K. N. Impaired gastric acid secretion in mast cell-deficient mice. Am J Physiol. 1990 Jul;259(1 Pt 1):G41–G47. doi: 10.1152/ajpgi.1990.259.1.G41. [DOI] [PubMed] [Google Scholar]
  32. Stuart-Tilley A., Sardet C., Pouyssegur J., Schwartz M. A., Brown D., Alper S. L. Immunolocalization of anion exchanger AE2 and cation exchanger NHE-1 in distinct adjacent cells of gastric mucosa. Am J Physiol. 1994 Feb;266(2 Pt 1):C559–C568. doi: 10.1152/ajpcell.1994.266.2.C559. [DOI] [PubMed] [Google Scholar]
  33. Tse C. M., Levine S. A., Yun C. H., Montrose M. H., Little P. J., Pouyssegur J., Donowitz M. Cloning and expression of a rabbit cDNA encoding a serum-activated ethylisopropylamiloride-resistant epithelial Na+/H+ exchanger isoform (NHE-2). J Biol Chem. 1993 Jun 5;268(16):11917–11924. [PubMed] [Google Scholar]
  34. Wakabayashi S., Fafournoux P., Sardet C., Pouysségur J. The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls "H(+)-sensing". Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2424–2428. doi: 10.1073/pnas.89.6.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wang Z., Orlowski J., Shull G. E. Primary structure and functional expression of a novel gastrointestinal isoform of the rat Na/H exchanger. J Biol Chem. 1993 Jun 5;268(16):11925–11928. [PubMed] [Google Scholar]
  36. Wang Z., Schultheis P. J., Shull G. E. Three N-terminal variants of the AE2 Cl-/HCO3- exchanger are encoded by mRNAs transcribed from alternative promoters. J Biol Chem. 1996 Mar 29;271(13):7835–7843. doi: 10.1074/jbc.271.13.7835. [DOI] [PubMed] [Google Scholar]
  37. Wood L. R., Dubois A. Scanning electron microscopy of the stomach during modifications of acid secretion. Am J Physiol. 1983 May;244(5):G475–G479. doi: 10.1152/ajpgi.1983.244.5.G475. [DOI] [PubMed] [Google Scholar]
  38. Yu F. H., Shull G. E., Orlowski J. Functional properties of the rat Na/H exchanger NHE-2 isoform expressed in Na/H exchanger-deficient Chinese hamster ovary cells. J Biol Chem. 1993 Dec 5;268(34):25536–25541. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES