Abstract
Similar to pancreatic islets, submandibular glands are more rapidly infiltrated in female NOD mice than in males. The present comparative analysis of cellular infiltrations in lacrimal glands, however, revealed the opposite finding. At 12 wk of age, approximately 25% of male lacrimal tissue area is infiltrated, whereas age-matched female NOD mice still lack major signs of inflammation. T cells predominate in early stages of invasion, but B cells accumulate promptly in more advanced stages, and ultimately dominate over T cells. Dacryoadenitis is promoted by sex hormones, as suggested by the reduced infiltrations seen in orchidectomized NOD males (P < 0.01). It is also controlled by the local environment provided by the lacrimal tissue. Splenocytes from 4- and 20-wk-old female NOD mice cause massive lesions upon adoptive transfer into NOD male recipients while, conversely, female recipients develop barely any histological sign of infiltration, even after transfer of splenocytes from 20-wk-old donor males. These observations provide strong evidence for a dacryoadenitis-promoting role of male gonadal hormones in NOD mice, a finding that contrasts the known androgen-mediated protective effects on insulitis and submandibulitis in the same strain and on dacryoadenitis in other animal models of Sjögren's syndrome.
Full Text
The Full Text of this article is available as a PDF (714.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson T. C., 3rd, Fox R. I., Frisman D. M., Howell F. V. Immunohistologic analysis of lymphoid infiltrates in primary Sjogren's syndrome using monoclonal antibodies. J Immunol. 1983 Jan;130(1):203–208. [PubMed] [Google Scholar]
- Ariga H., Edwards J., Sullivan D. A. Androgen control of autoimmune expression in lacrimal glands of MRL/Mp-lpr/lpr mice. Clin Immunol Immunopathol. 1989 Dec;53(3):499–508. doi: 10.1016/0090-1229(89)90011-1. [DOI] [PubMed] [Google Scholar]
- Bedossa P., Bendelac A., Bach J. F., Carnaud C. Syngeneic T cell transfer of diabetes into NOD newborn mice: in situ studies of the autoimmune steps leading to insulin-producing cell destruction. Eur J Immunol. 1989 Oct;19(10):1947–1951. doi: 10.1002/eji.1830191028. [DOI] [PubMed] [Google Scholar]
- Bendelac A., Carnaud C., Boitard C., Bach J. F. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J Exp Med. 1987 Oct 1;166(4):823–832. doi: 10.1084/jem.166.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castaño L., Eisenbarth G. S. Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol. 1990;8:647–679. doi: 10.1146/annurev.iy.08.040190.003243. [DOI] [PubMed] [Google Scholar]
- Christianson S. W., Shultz L. D., Leiter E. H. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes. 1993 Jan;42(1):44–55. doi: 10.2337/diab.42.1.44. [DOI] [PubMed] [Google Scholar]
- Duke O., Panayi G. S., Janossy G., Poulter L. W. An immunohistological analysis of lymphocyte subpopulations and their microenvironment in the synovial membranes of patients with rheumatoid arthritis using monoclonal antibodies. Clin Exp Immunol. 1982 Jul;49(1):22–30. [PMC free article] [PubMed] [Google Scholar]
- Faveeuw C., Gagnerault M. C., Lepault F. Expression of homing and adhesion molecules in infiltrated islets of Langerhans and salivary glands of nonobese diabetic mice. J Immunol. 1994 Jun 15;152(12):5969–5978. [PubMed] [Google Scholar]
- Fitzpatrick F., Lepault F., Homo-Delarche F., Bach J. F., Dardenne M. Influence of castration, alone or combined with thymectomy, on the development of diabetes in the nonobese diabetic mouse. Endocrinology. 1991 Sep;129(3):1382–1390. doi: 10.1210/endo-129-3-1382. [DOI] [PubMed] [Google Scholar]
- Fox R. I., Robinson C. A., Curd J. G., Kozin F., Howell F. V. Sjögren's syndrome. Proposed criteria for classification. Arthritis Rheum. 1986 May;29(5):577–585. doi: 10.1002/art.1780290501. [DOI] [PubMed] [Google Scholar]
- Garchon H. J., Bedossa P., Eloy L., Bach J. F. Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice. Nature. 1991 Sep 19;353(6341):260–262. doi: 10.1038/353260a0. [DOI] [PubMed] [Google Scholar]
- Goillot E., Mutin M., Touraine J. L. Sialadenitis in nonobese diabetic mice: transfer into syngeneic healthy neonates by splenic T lymphocytes. Clin Immunol Immunopathol. 1991 Jun;59(3):462–473. doi: 10.1016/0090-1229(91)90041-8. [DOI] [PubMed] [Google Scholar]
- Hoffman R. W., Alspaugh M. A., Waggie K. S., Durham J. B., Walker S. E. Sjögren's syndrome in MRL/l and MRL/n mice. Arthritis Rheum. 1984 Feb;27(2):157–165. doi: 10.1002/art.1780270206. [DOI] [PubMed] [Google Scholar]
- Humphreys-Beher M. G., Hu Y., Nakagawa Y., Wang P. L., Purushotham K. R. Utilization of the non-obese diabetic (NOD) mouse as an animal model for the study of secondary Sjögren's syndrome. Adv Exp Med Biol. 1994;350:631–636. doi: 10.1007/978-1-4615-2417-5_105. [DOI] [PubMed] [Google Scholar]
- Hunger R. E., Müller S., Laissue J. A., Hess M. W., Carnaud C., Garcia I., Mueller C. Inhibition of submandibular and lacrimal gland infiltration in nonobese diabetic mice by transgenic expression of soluble TNF-receptor p55. J Clin Invest. 1996 Aug 15;98(4):954–961. doi: 10.1172/JCI118879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jabs D. A., Alexander E. L., Green W. R. Ocular inflammation in autoimmune MRL/Mp mice. Invest Ophthalmol Vis Sci. 1985 Sep;26(9):1223–1229. [PubMed] [Google Scholar]
- Jabs D. A., Enger C., Prendergast R. A. Murine models of Sjögren's syndrome. Evolution of the lacrimal gland inflammatory lesions. Invest Ophthalmol Vis Sci. 1991 Feb;32(2):371–380. [PubMed] [Google Scholar]
- Jabs D. A., Prendergast R. A. Murine models of Sjögren's syndrome. Immunohistologic analysis of different strains. Invest Ophthalmol Vis Sci. 1988 Sep;29(9):1437–1443. [PubMed] [Google Scholar]
- Jabs D. A., Prendergast R. A. Murine models of Sjögren's syndrome. Adv Exp Med Biol. 1994;350:623–630. doi: 10.1007/978-1-4615-2417-5_104. [DOI] [PubMed] [Google Scholar]
- Kaufman D. L., Clare-Salzler M., Tian J., Forsthuber T., Ting G. S., Robinson P., Atkinson M. A., Sercarz E. E., Tobin A. J., Lehmann P. V. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature. 1993 Nov 4;366(6450):69–72. doi: 10.1038/366069a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kessler H. S. A laboratory model for Sjögren's syndrome. Am J Pathol. 1968 Mar;52(3):671–685. [PMC free article] [PubMed] [Google Scholar]
- Miller B. J., Appel M. C., O'Neil J. J., Wicker L. S. Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. J Immunol. 1988 Jan 1;140(1):52–58. [PubMed] [Google Scholar]
- Moore P. A., Bounous D. I., Kaswan R. L., Humphreys-Beher M. G. Histologic examination of the NOD-mouse lacrimal glands, a potential model for idiopathic autoimmune dacryoadenitis in Sjogren's syndrome. Lab Anim Sci. 1996 Feb;46(1):125–128. [PubMed] [Google Scholar]
- Pepose J. S., Akata R. F., Pflugfelder S. C., Voigt W. Mononuclear cell phenotypes and immunoglobulin gene rearrangements in lacrimal gland biopsies from patients with Sjögren's syndrome. Ophthalmology. 1990 Dec;97(12):1599–1605. doi: 10.1016/s0161-6420(90)32372-2. [DOI] [PubMed] [Google Scholar]
- Pflugfelder S. C., Crouse C. A., Monroy D., Yen M., Rowe M., Atherton S. S. Epstein-Barr virus and the lacrimal gland pathology of Sjögren's syndrome. Am J Pathol. 1993 Jul;143(1):49–64. [PMC free article] [PubMed] [Google Scholar]
- Pozzilli P., Signore A., Williams A. J., Beales P. E. NOD mouse colonies around the world--recent facts and figures. Immunol Today. 1993 May;14(5):193–196. doi: 10.1016/0167-5699(93)90160-M. [DOI] [PubMed] [Google Scholar]
- Prochazka M., Gaskins H. R., Shultz L. D., Leiter E. H. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3290–3294. doi: 10.1073/pnas.89.8.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roubinian J. R., Papoian R., Talal N. Androgenic hormones modulate autoantibody responses and improve survival in murine lupus. J Clin Invest. 1977 Jun;59(6):1066–1070. doi: 10.1172/JCI108729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato E. H., Ariga H., Sullivan D. A. Impact of androgen therapy in Sjögren's syndrome: hormonal influence on lymphocyte populations and Ia expression in lacrimal glands of MRL/Mp-lpr/lpr mice. Invest Ophthalmol Vis Sci. 1992 Jul;33(8):2537–2545. [PubMed] [Google Scholar]
- Sato E. H., Sullivan D. A. Comparative influence of steroid hormones and immunosuppressive agents on autoimmune expression in lacrimal glands of a female mouse model of Sjögren's syndrome. Invest Ophthalmol Vis Sci. 1994 Apr;35(5):2632–2642. [PubMed] [Google Scholar]
- Sullivan D. A., Edwards J. A. Androgen stimulation of lacrimal gland function in mouse models of Sjögren's syndrome. J Steroid Biochem Mol Biol. 1997 Feb;60(3-4):237–245. doi: 10.1016/s0960-0760(96)00190-2. [DOI] [PubMed] [Google Scholar]
- Sullivan D. A., Sato E. H. Potential therapeutic approach for the hormonal treatment of lacrimal gland dysfunction in Sjögren's syndrome. Clin Immunol Immunopathol. 1992 Jul;64(1):9–16. doi: 10.1016/0090-1229(92)90052-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tisch R., Yang X. D., Singer S. M., Liblau R. S., Fugger L., McDevitt H. O. Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature. 1993 Nov 4;366(6450):72–75. doi: 10.1038/366072a0. [DOI] [PubMed] [Google Scholar]
- Wicker L. S., Miller B. J., Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986 Aug;35(8):855–860. doi: 10.2337/diab.35.8.855. [DOI] [PubMed] [Google Scholar]
- Wicker L. S., Todd J. A., Peterson L. B. Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol. 1995;13:179–200. doi: 10.1146/annurev.iy.13.040195.001143. [DOI] [PubMed] [Google Scholar]
- Yang S. K., Eckmann L., Panja A., Kagnoff M. F. Differential and regulated expression of C-X-C, C-C, and C-chemokines by human colon epithelial cells. Gastroenterology. 1997 Oct;113(4):1214–1223. doi: 10.1053/gast.1997.v113.pm9322516. [DOI] [PubMed] [Google Scholar]