Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Mar 15;101(6):1424–1431. doi: 10.1172/JCI1012

Pertussis toxin-sensitive G proteins influence nitric oxide synthase III activity and protein levels in rat heart.

J M Hare 1, B Kim 1, N A Flavahan 1, K M Ricker 1, X Peng 1, L Colman 1, R G Weiss 1, D A Kass 1
PMCID: PMC508698  PMID: 9502785

Abstract

Inhibitory G protein activity (Gi) and nitric oxide (NO) modulate muscarinic-cholinergic (MC) inhibition of cardiac beta-adrenergic inotropic responses. We hypothesized that Gi mediates MC-NO synthase (NOS) signal transduction. Isoproterenol (0.2-0.8 microg/min) and acetylcholine (1 microM) were administered to isolated perfused rat hearts pretreated with saline (controls; n = 8) or pertussis toxin (PT; 30 microg/kg intraperitoneally 3 d before study; n = 20). PT abrogated in vitro ADP-ribosylation of Gi protein alpha subunit(s) indicating near-total decrease in Gi protein function. Isoproterenol increased peak +dP/dt in both control (peak isoproterenol effect: +2, 589+/-293 mmHg/s, P < 0.0001) and PT hearts (+3,879+/-474 mmHg/s, P < 0.0001). Acetylcholine reversed isoproterenol inotropy in controls (108+/-21% reduction of +dP/dt response, P = 0.001), but had no effect in PT hearts. In controls, NG-monomethyl-L-arginine (100 microM) reduced basal +dP/dt, augmented isoproterenol +dP/dt (peak effect: +4,634+/-690 mmHg/s, P < 0.0001), and reduced the MC inhibitory effect to 69+/-8% (P < 0.03 vs. baseline). L-arginine (100 M) had no effect in controls but in PT hearts decreased basal +dP/dt by 1, 426+/-456 mmHg/s (P < 0.005), downward-shifted the isoproterenol concentration-effect curve, and produced a small MC inhibitory effect (27+/-4% reduction, P < 0.05). This enhanced response to NO substrate was associated with increased NOS III protein abundance, and a three- to fivefold increase in in vitro calcium-dependent NOS activity. Neomycin (1 microM) inhibition of phospholipase C did not reverse L-arginine enhancement of MC inhibitory effects. These data support a primary role for Gi in MC receptor signal transduction with NOS in rat heart, and demonstrate regulatory linkage between Gi and NOS III protein levels.

Full Text

The Full Text of this article is available as a PDF (209.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson P. B., Hull S. S., Jr, Vanoli E., De Ferrari G. M., Wisler P., Foreman R. D., Watanabe A. M., Schwartz P. J. Pertussis toxin-induced ADP ribosylation of inhibitor G proteins alters vagal control of heart rate in vivo. Am J Physiol. 1993 Aug;265(2 Pt 2):H734–H740. doi: 10.1152/ajpheart.1993.265.2.H734. [DOI] [PubMed] [Google Scholar]
  2. Ayajiki K., Kindermann M., Hecker M., Fleming I., Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res. 1996 May;78(5):750–758. doi: 10.1161/01.res.78.5.750. [DOI] [PubMed] [Google Scholar]
  3. Balligand J. L., Kelly R. A., Marsden P. A., Smith T. W., Michel T. Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):347–351. doi: 10.1073/pnas.90.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balligand J. L., Kobzik L., Han X., Kaye D. M., Belhassen L., O'Hara D. S., Kelly R. A., Smith T. W., Michel T. Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem. 1995 Jun 16;270(24):14582–14586. doi: 10.1074/jbc.270.24.14582. [DOI] [PubMed] [Google Scholar]
  5. Balligand J. L., Ungureanu-Longrois D., Simmons W. W., Kobzik L., Lowenstein C. J., Lamas S., Kelly R. A., Smith T. W., Michel T. Induction of NO synthase in rat cardiac microvascular endothelial cells by IL-1 beta and IFN-gamma. Am J Physiol. 1995 Mar;268(3 Pt 2):H1293–H1303. doi: 10.1152/ajpheart.1995.268.3.H1293. [DOI] [PubMed] [Google Scholar]
  6. Belhassen L., Kelly R. A., Smith T. W., Balligand J. L. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes. J Clin Invest. 1996 Apr 15;97(8):1908–1915. doi: 10.1172/JCI118622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berger H. J., Prasad S. K., Davidoff A. J., Pimental D., Ellingsen O., Marsh J. D., Smith T. W., Kelly R. A. Continual electric field stimulation preserves contractile function of adult ventricular myocytes in primary culture. Am J Physiol. 1994 Jan;266(1 Pt 2):H341–H349. doi: 10.1152/ajpheart.1994.266.1.H341. [DOI] [PubMed] [Google Scholar]
  8. Boyer J. L., Martínez-Cárcamo M., Monroy-Sánchez A., Juárez-Ayala J., Pastelín G., Posadas C., García-Sáinz J. A. Effect of pertussis toxin on the heart muscarinic-cholinergic receptors and their function. Life Sci. 1986 Aug 18;39(7):603–610. doi: 10.1016/0024-3205(86)90040-8. [DOI] [PubMed] [Google Scholar]
  9. Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Campbell D. L., Stamler J. S., Strauss H. C. Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol. 1996 Oct;108(4):277–293. doi: 10.1085/jgp.108.4.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature. 1985 Apr 11;314(6011):534–536. doi: 10.1038/314534a0. [DOI] [PubMed] [Google Scholar]
  12. Feron O., Smith T. W., Michel T., Kelly R. A. Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem. 1997 Jul 11;272(28):17744–17748. doi: 10.1074/jbc.272.28.17744. [DOI] [PubMed] [Google Scholar]
  13. Flavahan N. A., Shimokawa H., Vanhoutte P. M. Inhibition of endothelium-dependent relaxations by phorbol myristate acetate in canine coronary arteries: role of a pertussis toxin-sensitive G-protein. J Pharmacol Exp Ther. 1991 Jan;256(1):50–55. [PubMed] [Google Scholar]
  14. Fleming J. W., Hodges T. D., Watanabe A. M. Pertussis toxin-treated dog: a whole animal model of impaired inhibitory regulation of adenylate cyclase. Circ Res. 1988 May;62(5):992–1000. doi: 10.1161/01.res.62.5.992. [DOI] [PubMed] [Google Scholar]
  15. Fleming J. W., Wisler P. L., Watanabe A. M. Signal transduction by G proteins in cardiac tissues. Circulation. 1992 Feb;85(2):420–433. doi: 10.1161/01.cir.85.2.420. [DOI] [PubMed] [Google Scholar]
  16. George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. George W. J., Wilkerson R. D., Kadowitz P. J. Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J Pharmacol Exp Ther. 1973 Jan;184(1):228–235. [PubMed] [Google Scholar]
  18. Goto Y., Slinker B. K., LeWinter M. M. Effect of coronary hyperemia on Emax and oxygen consumption in blood-perfused rabbit hearts. Energetic consequences of Gregg's phenomenon. Circ Res. 1991 Feb;68(2):482–492. doi: 10.1161/01.res.68.2.482. [DOI] [PubMed] [Google Scholar]
  19. Han X., Shimoni Y., Giles W. R. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate. J Gen Physiol. 1995 Jul;106(1):45–65. doi: 10.1085/jgp.106.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Han X., Shimoni Y., Giles W. R. An obligatory role for nitric oxide in autonomic control of mammalian heart rate. J Physiol. 1994 Apr 15;476(2):309–314. doi: 10.1113/jphysiol.1994.sp020132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hare J. M., Keaney J. F., Jr, Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Role of nitric oxide in parasympathetic modulation of beta-adrenergic myocardial contractility in normal dogs. J Clin Invest. 1995 Jan;95(1):360–366. doi: 10.1172/JCI117664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hare J. M., Loh E., Creager M. A., Colucci W. S. Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation. 1995 Oct 15;92(8):2198–2203. doi: 10.1161/01.cir.92.8.2198. [DOI] [PubMed] [Google Scholar]
  23. Hartzell H. C., Fischmeister R. Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature. 1986 Sep 18;323(6085):273–275. doi: 10.1038/323273a0. [DOI] [PubMed] [Google Scholar]
  24. Henning R. J., Khalil I. R., Levy M. N. Vagal stimulation attenuates sympathetic enhancement of left ventricular function. Am J Physiol. 1990 May;258(5 Pt 2):H1470–H1475. doi: 10.1152/ajpheart.1990.258.5.H1470. [DOI] [PubMed] [Google Scholar]
  25. Kapadia S. R., Oral H., Lee J., Nakano M., Taffet G. E., Mann D. L. Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ Res. 1997 Aug;81(2):187–195. doi: 10.1161/01.res.81.2.187. [DOI] [PubMed] [Google Scholar]
  26. Keaney J. F., Jr, Hare J. M., Balligand J. L., Loscalzo J., Smith T. W., Colucci W. S. Inhibition of nitric oxide synthase augments myocardial contractile responses to beta-adrenergic stimulation. Am J Physiol. 1996 Dec;271(6 Pt 2):H2646–H2652. doi: 10.1152/ajpheart.1996.271.6.H2646. [DOI] [PubMed] [Google Scholar]
  27. Kelly R. A., Balligand J. L., Smith T. W. Nitric oxide and cardiac function. Circ Res. 1996 Sep;79(3):363–380. doi: 10.1161/01.res.79.3.363. [DOI] [PubMed] [Google Scholar]
  28. Klabunde R. E., Ritger R. C., Helgren M. C. Cardiovascular actions of inhibitors of endothelium-derived relaxing factor (nitric oxide) formation/release in anesthetized dogs. Eur J Pharmacol. 1991 Jun 18;199(1):51–59. doi: 10.1016/0014-2999(91)90636-5. [DOI] [PubMed] [Google Scholar]
  29. Kojda G., Kottenberg K., Nix P., Schlüter K. D., Piper H. M., Noack E. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res. 1996 Jan;78(1):91–101. doi: 10.1161/01.res.78.1.91. [DOI] [PubMed] [Google Scholar]
  30. Krause E. G., Halle W., Wollenberger A. Effect of dibutyryl cyclic GMP on cultured beating rat heart cells. Adv Cyclic Nucleotide Res. 1972;1:301–305. [PubMed] [Google Scholar]
  31. Kuchan M. J., Jo H., Frangos J. A. Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am J Physiol. 1994 Sep;267(3 Pt 1):C753–C758. doi: 10.1152/ajpcell.1994.267.3.C753. [DOI] [PubMed] [Google Scholar]
  32. Levi R. C., Alloatti G., Penna C., Gallo M. P. Guanylate-cyclase-mediated inhibition of cardiac ICa by carbachol and sodium nitroprusside. Pflugers Arch. 1994 Mar;426(5):419–426. doi: 10.1007/BF00388305. [DOI] [PubMed] [Google Scholar]
  33. Liao J. K., Homcy C. J. Specific receptor-guanine nucleotide binding protein interaction mediates the release of endothelium-derived relaxing factor. Circ Res. 1992 May;70(5):1018–1026. doi: 10.1161/01.res.70.5.1018. [DOI] [PubMed] [Google Scholar]
  34. Liao J. K., Homcy C. J. The G proteins of the G alpha i and G alpha q family couple the bradykinin receptor to the release of endothelium-derived relaxing factor. J Clin Invest. 1993 Nov;92(5):2168–2172. doi: 10.1172/JCI116818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Liao J. K., Homey C. J. The release of endothelium-derived relaxing factor via alpha 2-adrenergic receptor activation is specifically mediated by Gi alpha 2. J Biol Chem. 1993 Sep 15;268(26):19528–19533. [PubMed] [Google Scholar]
  36. Liao J. K. Inhibition of Gi proteins by low density lipoprotein attenuates bradykinin-stimulated release of endothelial-derived nitric oxide. J Biol Chem. 1994 Apr 29;269(17):12987–12992. [PubMed] [Google Scholar]
  37. Miller V. M., Flavahan N. A., Vanhoutte P. M. Pertussis toxin reduces endothelium-dependent and independent responses to alpha-2- adrenergic stimulation in systemic canine arteries and veins. J Pharmacol Exp Ther. 1991 Apr;257(1):290–293. [PubMed] [Google Scholar]
  38. Méry P. F., Lohmann S. M., Walter U., Fischmeister R. Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1197–1201. doi: 10.1073/pnas.88.4.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Méry P. F., Pavoine C., Belhassen L., Pecker F., Fischmeister R. Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem. 1993 Dec 15;268(35):26286–26295. [PubMed] [Google Scholar]
  40. Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
  41. Schulz R., Nava E., Moncada S. Induction and potential biological relevance of a Ca(2+)-independent nitric oxide synthase in the myocardium. Br J Pharmacol. 1992 Mar;105(3):575–580. doi: 10.1111/j.1476-5381.1992.tb09021.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shah A. M., Lewis M. J., Henderson A. H. Effects of 8-bromo-cyclic GMP on contraction and on inotropic response of ferret cardiac muscle. J Mol Cell Cardiol. 1991 Jan;23(1):55–64. doi: 10.1016/0022-2828(91)90038-n. [DOI] [PubMed] [Google Scholar]
  43. Shah A. M., Spurgeon H. A., Sollott S. J., Talo A., Lakatta E. G. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res. 1994 May;74(5):970–978. doi: 10.1161/01.res.74.5.970. [DOI] [PubMed] [Google Scholar]
  44. Stamler J. S., Loh E., Roddy M. A., Currie K. E., Creager M. A. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994 May;89(5):2035–2040. doi: 10.1161/01.cir.89.5.2035. [DOI] [PubMed] [Google Scholar]
  45. Sterin-Borda L., Echagüe A. V., Leiros C. P., Genaro A., Borda E. Endogenous nitric oxide signalling system and the cardiac muscarinic acetylcholine receptor-inotropic response. Br J Pharmacol. 1995 Aug;115(8):1525–1531. doi: 10.1111/j.1476-5381.1995.tb16646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tucek S., Dolezal V., Folbergrová J., Hynie S., Kolár F., Ostádal B. Pertussis toxin inhibits negative inotropic and negative chronotropic muscarinic cholinergic effects on the heart. Pflugers Arch. 1987 Feb;408(2):167–172. doi: 10.1007/BF00581347. [DOI] [PubMed] [Google Scholar]
  47. Vitale N., Thiersé D., Aunis D., Bader M. F. Exocytosis in chromaffin cells: evidence for a MgATP-independent step that requires a pertussis toxin-sensitive GTP-binding protein. Biochem J. 1994 May 15;300(Pt 1):217–227. doi: 10.1042/bj3000217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  49. Watanabe A. M., Besch H. R., Jr Interaction between cyclic adenosine monophosphate and cyclic gunaosine monophosphate in guinea pig ventricular myocardium. Circ Res. 1975 Sep;37(3):309–317. doi: 10.1161/01.res.37.3.309. [DOI] [PubMed] [Google Scholar]
  50. Weiss R. G., de Albuquerque C. P., Vandegaer K., Chacko V. P., Gerstenblith G. Attenuated glycogenolysis reduces glycolytic catabolite accumulation during ischemia in preconditioned rat hearts. Circ Res. 1996 Sep;79(3):435–446. doi: 10.1161/01.res.79.3.435. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES