Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 1;101(7):1431–1438. doi: 10.1172/JCI806

Alpha2-adrenergic receptor-mediated release of lysophosphatidic acid by adipocytes. A paracrine signal for preadipocyte growth.

P Valet 1, C Pagès 1, O Jeanneton 1, D Daviaud 1, P Barbe 1, M Record 1, J S Saulnier-Blache 1, M Lafontan 1
PMCID: PMC508721  PMID: 9525986

Abstract

In the search for the existence of adrenergic regulation of the autocrine/paracrine function of the white adipose tissue, it was observed that conditioned media from isolated adipocytes or dialysates obtained by in situ microdialysis of human subcutaneous adipose tissue increased spreading and proliferation of 3T3F442A preadipocytes. These effects were amplified when an alpha2-adrenergic agonist was present during the obtention of conditioned media and microdialysates. This alpha2-adrenergic-dependent trophic activity was completely abolished by pretreatment of the conditioned media or microdialysates with the lysophospholipase, phospholipase B. Among the different lysophospholipids tested only lysophosphatidic acid (LPA) was able to induce spreading and proliferation of 3T3F442A preadipocytes. Moreover, previous chronic treatment of 3T3F442A preadipocytes with LPA which led to a specific desensitization of LPA responsiveness, abolished the alpha2-adrenergic-dependent trophic activities of the conditioned media and microdialysates. Finally, alpha2-adrenergic stimulation led to a rapid, sustained, and pertussis toxin-dependent release of [32P]LPA from [32P]-labeled adipocytes. Based upon these results it was proposed that in vitro and in situ stimulation of adipocyte alpha2-adrenergic receptors provokes the extracellular release of LPA leading, in turn, to regulation of preadipocyte growth.

Full Text

The Full Text of this article is available as a PDF (239.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ailhaud G., Grimaldi P., Négrel R. A molecular view of adipose tissue. Int J Obes Relat Metab Disord. 1992 Dec;16 (Suppl 2):S17–S21. [PubMed] [Google Scholar]
  2. Amri E. Z., Bertrand B., Ailhaud G., Grimaldi P. Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J Lipid Res. 1991 Sep;32(9):1449–1456. [PubMed] [Google Scholar]
  3. An S., Bleu T., Huang W., Hallmark O. G., Coughlin S. R., Goetzl E. J. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 1997 Nov 17;417(3):279–282. doi: 10.1016/s0014-5793(97)01301-x. [DOI] [PubMed] [Google Scholar]
  4. An S., Dickens M. A., Bleu T., Hallmark O. G., Goetzl E. J. Molecular cloning of the human Edg2 protein and its identification as a functional cellular receptor for lysophosphatidic acid. Biochem Biophys Res Commun. 1997 Feb 24;231(3):619–622. doi: 10.1006/bbrc.1997.6150. [DOI] [PubMed] [Google Scholar]
  5. Aubert J., Ailhaud G., Negrel R. Evidence for a novel regulatory pathway activated by (carba)prostacyclin in preadipose and adipose cells. FEBS Lett. 1996 Nov 11;397(1):117–121. doi: 10.1016/s0014-5793(96)01152-0. [DOI] [PubMed] [Google Scholar]
  6. Barbe P., Millet L., Galitzky J., Lafontan M., Berlan M. In situ assessment of the role of the beta 1-, beta 2- and beta 3-adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol. 1996 Mar;117(5):907–913. doi: 10.1111/j.1476-5381.1996.tb15279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bouloumié A., Planat V., Devedjian J. C., Valet P., Saulnier-Blache J. S., Record M., Lafontan M. Alpha 2-adrenergic stimulation promotes preadipocyte proliferation. Involvement of mitogen-activated protein kinases. J Biol Chem. 1994 Dec 2;269(48):30254–30259. [PubMed] [Google Scholar]
  8. Bétuing S., Daviaud D., Valet P., Bouloumié A., Lafontan M., Saulnier-Blache J. S. alpha2-Adrenoceptor stimulation promotes actin polymerization and focal adhesion in 3T3F442A and BFC-1beta preadipocytes. Endocrinology. 1996 Dec;137(12):5220–5229. doi: 10.1210/endo.137.12.8940338. [DOI] [PubMed] [Google Scholar]
  9. Bétuing S., Valet P., Lapalu S., Peyroulan D., Hickson G., Daviaud D., Lafontan M., Saulnier-Blache J. S. Functional consequences of constitutively active alpha2A-adrenergic receptor expression in 3T3F442A preadipocytes and adipocytes. Biochem Biophys Res Commun. 1997 Jun 27;235(3):765–773. doi: 10.1006/bbrc.1997.6887. [DOI] [PubMed] [Google Scholar]
  10. Carpene C., Berlan M., Lafontan M. Influence of development and reduction of fat stores on the antilipolytic alpha 2-adrenoceptor in hamster adipocytes: comparison with adenosine and beta-adrenergic lipolytic responses. J Lipid Res. 1983 Jun;24(6):766–774. [PubMed] [Google Scholar]
  11. Carpéné C., Rebourcet M. C., Guichard C., Lafontan M., Lavau M. Increased alpha 2-adrenergic binding sites and antilipolytic effect in adipocytes from genetically obese rats. J Lipid Res. 1990 May;31(5):811–819. [PubMed] [Google Scholar]
  12. Fourcade O., Simon M. F., Viodé C., Rugani N., Leballe F., Ragab A., Fournié B., Sarda L., Chap H. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 1995 Mar 24;80(6):919–927. doi: 10.1016/0092-8674(95)90295-3. [DOI] [PubMed] [Google Scholar]
  13. Fukami K., Takenawa T. Phosphatidic acid that accumulates in platelet-derived growth factor-stimulated Balb/c 3T3 cells is a potential mitogenic signal. J Biol Chem. 1992 Jun 5;267(16):10988–10993. [PubMed] [Google Scholar]
  14. Gaits F., Fourcade O., Le Balle F., Gueguen G., Gaigé B., Gassama-Diagne A., Fauvel J., Salles J. P., Mauco G., Simon M. F. Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett. 1997 Jun 23;410(1):54–58. doi: 10.1016/s0014-5793(97)00411-0. [DOI] [PubMed] [Google Scholar]
  15. Galitzky J., Larrouy D., Berlan M., Lafontan M. New tools for human fat cell alpha-2A adrenoceptor characterization. Identification on membranes and on intact cells using the new antagonist [3H]RX821002. J Pharmacol Exp Ther. 1990 Jan;252(1):312–319. [PubMed] [Google Scholar]
  16. Gao G., Serrero G. Phospholipase A2 is a differentiation-dependent enzymatic activity for adipogenic cell line and adipocyte precursors in primary culture. J Biol Chem. 1990 Feb 15;265(5):2431–2434. [PubMed] [Google Scholar]
  17. Hauner H., Entenmann G., Wabitsch M., Gaillard D., Ailhaud G., Negrel R., Pfeiffer E. F. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989 Nov;84(5):1663–1670. doi: 10.1172/JCI114345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hecht J. H., Weiner J. A., Post S. R., Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996 Nov;135(4):1071–1083. doi: 10.1083/jcb.135.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jones S. B., Halenda S. P., Bylund D. B. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms. Mol Pharmacol. 1991 Feb;39(2):239–245. [PubMed] [Google Scholar]
  20. Lafontan M., Arner P. Application of in situ microdialysis to measure metabolic and vascular responses in adipose tissue. Trends Pharmacol Sci. 1996 Sep;17(9):309–313. [PubMed] [Google Scholar]
  21. Lafontan M., Berlan M. Fat cell alpha 2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocr Rev. 1995 Dec;16(6):716–738. doi: 10.1210/edrv-16-6-716. [DOI] [PubMed] [Google Scholar]
  22. Mauriege P., Galitzky J., Berlan M., Lafontan M. Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest. 1987 Apr;17(2):156–165. doi: 10.1111/j.1365-2362.1987.tb02395.x. [DOI] [PubMed] [Google Scholar]
  23. Misaki H., Matsumoto M. Purification of lysophospholipase of Vibrio parahaemolyticus and its properties. J Biochem. 1978 May;83(5):1395–1405. doi: 10.1093/oxfordjournals.jbchem.a132049. [DOI] [PubMed] [Google Scholar]
  24. Moolenaar W. H., Kranenburg O., Postma F. R., Zondag G. C. Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol. 1997 Apr;9(2):168–173. doi: 10.1016/s0955-0674(97)80059-2. [DOI] [PubMed] [Google Scholar]
  25. Morita T., Imagawa T., Kanagawa A., Ueki H. Sodium orthovanadate increases phospholipase A2 activity in isolated rat fat pads: a role of phospholipase A2 in the vanadate-stimulated release of lipoprotein lipase activity. Biol Pharm Bull. 1995 Feb;18(2):347–349. doi: 10.1248/bpb.18.347. [DOI] [PubMed] [Google Scholar]
  26. Postma F. R., Jalink K., Hengeveld T., Moolenaar W. H. Sphingosine-1-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. EMBO J. 1996 May 15;15(10):2388–2392. [PMC free article] [PubMed] [Google Scholar]
  27. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  28. Shillabeer G., Forden J. M., Lau D. C. Induction of preadipocyte differentiation by mature fat cells in the rat. J Clin Invest. 1989 Aug;84(2):381–387. doi: 10.1172/JCI114177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spiegelman B. M., Flier J. S. Adipogenesis and obesity: rounding out the big picture. Cell. 1996 Nov 1;87(3):377–389. doi: 10.1016/s0092-8674(00)81359-8. [DOI] [PubMed] [Google Scholar]
  30. Sweatt J. D., Johnson S. L., Cragoe E. J., Limbird L. E. Inhibitors of Na+/H+ exchange block stimulus-provoked arachidonic acid release in human platelets. Selective effects on platelet activation by epinephrine, ADP, and lower concentrations of thrombin. J Biol Chem. 1985 Oct 25;260(24):12910–12919. [PubMed] [Google Scholar]
  31. Taosis M., Valet P., Estan L., Lafontan M., Montastruc P., Berlan M. Obesity modifies the adrenergic status of dog adipose tissue. J Pharmacol Exp Ther. 1989 Sep;250(3):1061–1066. [PubMed] [Google Scholar]
  32. Thomson F. J., Perkins L., Ahern D., Clark M. Identification and characterization of a lysophosphatidic acid receptor. Mol Pharmacol. 1994 Apr;45(4):718–723. [PubMed] [Google Scholar]
  33. Tigyi G., Miledi R. Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells. J Biol Chem. 1992 Oct 25;267(30):21360–21367. [PubMed] [Google Scholar]
  34. Wada A., Tojo H., Sugiura T., Fujiwara Y., Kamada T., Ueda N., Okamoto M. Group II phospholipase A2 as an autocrine growth factor mediating interleukin-1 action on mesangial cells. Biochim Biophys Acta. 1997 Mar 10;1345(1):99–108. doi: 10.1016/s0005-2760(96)00158-0. [DOI] [PubMed] [Google Scholar]
  35. Yamamura S., Yatomi Y., Ruan F., Sweeney E. A., Hakomori S., Igarashi Y. Sphingosine 1-phosphate regulates melanoma cell motility through a receptor-coupled extracellular action and in a pertussis toxin-insensitive manner. Biochemistry. 1997 Sep 2;36(35):10751–10759. doi: 10.1021/bi970926s. [DOI] [PubMed] [Google Scholar]
  36. van der Bend R. L., Brunner J., Jalink K., van Corven E. J., Moolenaar W. H., van Blitterswijk W. J. Identification of a putative membrane receptor for the bioactive phospholipid, lysophosphatidic acid. EMBO J. 1992 Jul;11(7):2495–2501. doi: 10.1002/j.1460-2075.1992.tb05314.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES