Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 1;101(7):1439–1447. doi: 10.1172/JCI1963

Excess corticotropin releasing hormone-binding protein in the hypothalamic-pituitary-adrenal axis in transgenic mice.

H L Burrows 1, M Nakajima 1, J S Lesh 1, K A Goosens 1, L C Samuelson 1, A Inui 1, S A Camper 1, A F Seasholtz 1
PMCID: PMC508722  PMID: 9525987

Abstract

Corticotropin-releasing hormone (CRH) is the primary hypothalamic releasing factor that mediates the mammalian stress response. The CRH-binding protein (CRH-BP) is secreted from corticotropes, the pituitary CRH target cells, suggesting that the CRH-BP may modulate hypothalamic-pituitary-adrenal (HPA) axis activity by preventing CRH receptor stimulation. Transgenic mice were generated that constitutively express elevated levels of CRH-BP in the anterior pituitary gland. RNA and protein analyses confirmed the elevation of pituitary CRH-BP. Basal plasma concentrations of corticosterone and adrenocorticotropin hormone (ACTH) are unchanged, and a normal pattern of increased corticosterone and ACTH was observed after restraint stress. However, CRH and vasopressin (AVP) mRNA levels in the transgenic mice are increased by 82 and 35%, respectively, to compensate for the excess CRH-BP, consistent with the idea that CRH-BP levels are important for homeostasis. The transgenic mice exhibit increased activity in standard behavioral tests, and an altered circadian pattern of food intake which may be due to transgene expression in the brain. Alterations in CRH and AVP in response to elevated pituitary CRH-BP clearly demonstrate that regulation of CRH-BP is important in the function of the HPA axis.

Full Text

The Full Text of this article is available as a PDF (498.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerblom I. E., Ridgway E. C., Mellon P. L. An alpha-subunit-secreting cell line derived from a mouse thyrotrope tumor. Mol Endocrinol. 1990 Apr;4(4):589–596. doi: 10.1210/mend-4-4-589. [DOI] [PubMed] [Google Scholar]
  2. Burrows H. L., Birkmeier T. S., Seasholtz A. F., Camper S. A. Targeted ablation of cells in the pituitary primordia of transgenic mice. Mol Endocrinol. 1996 Nov;10(11):1467–1477. doi: 10.1210/mend.10.11.8923471. [DOI] [PubMed] [Google Scholar]
  3. Chrousos G. P. Regulation and dysregulation of the hypothalamic-pituitary-adrenal axis. The corticotropin-releasing hormone perspective. Endocrinol Metab Clin North Am. 1992 Dec;21(4):833–858. [PubMed] [Google Scholar]
  4. Cortright D. N., Nicoletti A., Seasholtz A. F. Molecular and biochemical characterization of the mouse brain corticotropin-releasing hormone-binding protein. Mol Cell Endocrinol. 1995 Jun;111(2):147–157. doi: 10.1016/0303-7207(95)03558-o. [DOI] [PubMed] [Google Scholar]
  5. Dallman M. F., Akana S. F., Levin N., Walker C. D., Bradbury M. J., Suemaru S., Scribner K. S. Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Ann N Y Acad Sci. 1994 Nov 30;746:22-31; discussion 31-2, 64-7. doi: 10.1111/j.1749-6632.1994.tb39206.x. [DOI] [PubMed] [Google Scholar]
  6. Dunn A. J., Berridge C. W. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev. 1990 May-Aug;15(2):71–100. doi: 10.1016/0165-0173(90)90012-d. [DOI] [PubMed] [Google Scholar]
  7. Gillies G. E., Linton E. A., Lowry P. J. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982 Sep 23;299(5881):355–357. doi: 10.1038/299355a0. [DOI] [PubMed] [Google Scholar]
  8. Glowa J. R., Barrett J. E., Russell J., Gold P. W. Effects of corticotropin releasing hormone on appetitive behaviors. Peptides. 1992 May-Jun;13(3):609–621. doi: 10.1016/0196-9781(92)90097-m. [DOI] [PubMed] [Google Scholar]
  9. Herman J. P. In situ hybridization analysis of vasopressin gene transcription in the paraventricular and supraoptic nuclei of the rat: regulation by stress and glucocorticoids. J Comp Neurol. 1995 Dec 4;363(1):15–27. doi: 10.1002/cne.903630103. [DOI] [PubMed] [Google Scholar]
  10. Herman J. P., Wiegand S. J., Watson S. J. Regulation of basal corticotropin-releasing hormone and arginine vasopressin messenger ribonucleic acid expression in the paraventricular nucleus: effects of selective hypothalamic deafferentations. Endocrinology. 1990 Nov;127(5):2408–2417. doi: 10.1210/endo-127-5-2408. [DOI] [PubMed] [Google Scholar]
  11. Kendall S. K., Gordon D. F., Birkmeier T. S., Petrey D., Sarapura V. D., O'Shea K. S., Wood W. M., Lloyd R. V., Ridgway E. C., Camper S. A. Enhancer-mediated high level expression of mouse pituitary glycoprotein hormone alpha-subunit transgene in thyrotropes, gonadotropes, and developing pituitary gland. Mol Endocrinol. 1994 Oct;8(10):1420–1433. doi: 10.1210/mend.8.10.7531821. [DOI] [PubMed] [Google Scholar]
  12. Lee E. H., Lin Y. P., Yin T. H. Effects of lateral and medial septal lesions on various activity and reactivity measures in rats. Physiol Behav. 1988;42(1):97–102. doi: 10.1016/0031-9384(88)90267-3. [DOI] [PubMed] [Google Scholar]
  13. Linton E. A., Wolfe C. D., Behan D. P., Lowry P. J. A specific carrier substance for human corticotrophin releasing factor in late gestational maternal plasma which could mask the ACTH-releasing activity. Clin Endocrinol (Oxf) 1988 Mar;28(3):315–324. doi: 10.1111/j.1365-2265.1988.tb01218.x. [DOI] [PubMed] [Google Scholar]
  14. Lister R. G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 1987;92(2):180–185. doi: 10.1007/BF00177912. [DOI] [PubMed] [Google Scholar]
  15. Muglia L. J., Jacobson L., Weninger S. C., Luedke C. E., Bae D. S., Jeong K. H., Majzoub J. A. Impaired diurnal adrenal rhythmicity restored by constant infusion of corticotropin-releasing hormone in corticotropin-releasing hormone-deficient mice. J Clin Invest. 1997 Jun 15;99(12):2923–2929. doi: 10.1172/JCI119487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muglia L., Jacobson L., Dikkes P., Majzoub J. A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature. 1995 Feb 2;373(6513):427–432. doi: 10.1038/373427a0. [DOI] [PubMed] [Google Scholar]
  17. Oh Y., Müller H. L., Neely E. K., Lamson G., Rosenfeld R. G. New concepts in insulin-like growth factor receptor physiology. Growth Regul. 1993 Jun;3(2):113–123. [PubMed] [Google Scholar]
  18. Petraglia F., Potter E., Cameron V. A., Sutton S., Behan D. P., Woods R. J., Sawchenko P. E., Lowry P. J., Vale W. Corticotropin-releasing factor-binding protein is produced by human placenta and intrauterine tissues. J Clin Endocrinol Metab. 1993 Oct;77(4):919–924. doi: 10.1210/jcem.77.4.8408466. [DOI] [PubMed] [Google Scholar]
  19. Potter E., Behan D. P., Fischer W. H., Linton E. A., Lowry P. J., Vale W. W. Cloning and characterization of the cDNAs for human and rat corticotropin releasing factor-binding proteins. Nature. 1991 Jan 31;349(6308):423–426. doi: 10.1038/349423a0. [DOI] [PubMed] [Google Scholar]
  20. Potter E., Behan D. P., Linton E. A., Lowry P. J., Sawchenko P. E., Vale W. W. The central distribution of a corticotropin-releasing factor (CRF)-binding protein predicts multiple sites and modes of interaction with CRF. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4192–4196. doi: 10.1073/pnas.89.9.4192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sapolsky R. M., Krey L. C., McEwen B. S. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986 Aug;7(3):284–301. doi: 10.1210/edrv-7-3-284. [DOI] [PubMed] [Google Scholar]
  22. Sasaki A., Liotta A. S., Luckey M. M., Margioris A. N., Suda T., Krieger D. T. Immunoreactive corticotropin-releasing factor is present in human maternal plasma during the third trimester of pregnancy. J Clin Endocrinol Metab. 1984 Oct;59(4):812–814. doi: 10.1210/jcem-59-4-812. [DOI] [PubMed] [Google Scholar]
  23. Suda T., Iwashita M., Tozawa F., Ushiyama T., Tomori N., Sumitomo T., Nakagami Y., Demura H., Shizume K. Characterization of corticotropin-releasing hormone binding protein in human plasma by chemical cross-linking and its binding during pregnancy. J Clin Endocrinol Metab. 1988 Dec;67(6):1278–1283. doi: 10.1210/jcem-67-6-1278. [DOI] [PubMed] [Google Scholar]
  24. Swanson L. W., Sawchenko P. E., Rivier J., Vale W. W. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 1983;36(3):165–186. doi: 10.1159/000123454. [DOI] [PubMed] [Google Scholar]
  25. Tuli J. S., Smith J. A., Morton D. B. Corticosterone, adrenal and spleen weight in mice after tail bleeding, and its effect on nearby animals. Lab Anim. 1995 Jan;29(1):90–95. doi: 10.1258/002367795780740339. [DOI] [PubMed] [Google Scholar]
  26. Windle J. J., Weiner R. I., Mellon P. L. Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol. 1990 Apr;4(4):597–603. doi: 10.1210/mend-4-4-597. [DOI] [PubMed] [Google Scholar]
  27. Young W. S., 3rd, Mezey E., Siegel R. E. Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett. 1986 Oct 8;70(2):198–203. doi: 10.1016/0304-3940(86)90463-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES