Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 1;101(7):1479–1489. doi: 10.1172/JCI627

Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus.

K Nakamura 1, T Takahashi 1, M Taniuchi 1, C X Hsu 1, C Owyang 1
PMCID: PMC508726  PMID: 9525991

Abstract

The mechanism that regulates the synthesis of nitric oxide synthase (NOS), a key enzyme responsible for NO production in the myenteric plexus, remains unknown. We investigated the roles of the vagal nerve and nicotinic synapses in the mediation of NOS synthesis in the gastric myenteric plexus in rats. Truncal vagotomy and administration of hexamethonium significantly reduced nonadrenergic, noncholinergic relaxation, the catalytic activity of NOS, the number of NOS-immunoreactive cells, and the density of NOS-immunoreactive bands and NOS mRNA bands obtained from gastric tissue. These results suggest that NOS expression in the gastric myenteric plexus is controlled by the vagal nerve and nicotinic synapses. We also investigated if stimulation of the nicotinic receptor increases neuronal NOS (nNOS) expression in cultured gastric myenteric ganglia. Incubation of cultured gastric myenteric ganglia with the nicotinic receptor agonist, 1,1-dimethyl-4-phenylpiperizinium (DMPP, 10(-10)-10(-7) M), for 24 h significantly increased the number of nNOS-immunoreactive cells and the density of immunoreactive nNOS bands and nNOS mRNA bands. nNOS mRNA expression stimulated by DMPP was antagonized by a protein kinase C antagonist, a phospholipase C inhibitor, and an intracellular Ca2+ chelator. We concluded that activation of the nicotinic receptor stimulates a Ca2+-dependent protein kinase C pathway, which in turn, upregulates nNOS mRNA expression and nNOS synthesis in the gastric myenteric plexus.

Full Text

The Full Text of this article is available as a PDF (586.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H., Jansson G. Elicitation of reflex vagal relaxation of the stomach from pharynx and esophagus in the cat. Acta Physiol Scand. 1969 Sep-Oct;77(1):172–178. doi: 10.1111/j.1748-1716.1969.tb04561.x. [DOI] [PubMed] [Google Scholar]
  2. Aimi Y., Kimura H., Kinoshita T., Minami Y., Fujimura M., Vincent S. R. Histochemical localization of nitric oxide synthase in rat enteric nervous system. Neuroscience. 1993 Mar;53(2):553–560. doi: 10.1016/0306-4522(93)90220-a. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. L., Grundy D., Lawes I. N. The role of the vagus and splanchnic nerves in the regulation of intragastric pressure in the ferret. J Physiol. 1980 Oct;307:401–411. doi: 10.1113/jphysiol.1980.sp013442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belai A., Schmidt H. H., Hoyle C. H., Hassall C. J., Saffrey M. J., Moss J., Förstermann U., Murad F., Burnstock G. Colocalization of nitric oxide synthase and NADPH-diaphorase in the myenteric plexus of the rat gut. Neurosci Lett. 1992 Aug 31;143(1-2):60–64. doi: 10.1016/0304-3940(92)90233-w. [DOI] [PubMed] [Google Scholar]
  5. Boeckxstaens G. E., Pelckmans P. A., Bogers J. J., Bult H., De Man J. G., Oosterbosch L., Herman A. G., Van Maercke Y. M. Release of nitric oxide upon stimulation of nonadrenergic noncholinergic nerves in the rat gastric fundus. J Pharmacol Exp Ther. 1991 Feb;256(2):441–447. [PubMed] [Google Scholar]
  6. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  7. Bredt D. S., Glatt C. E., Hwang P. M., Fotuhi M., Dawson T. M., Snyder S. H. Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron. 1991 Oct;7(4):615–624. doi: 10.1016/0896-6273(91)90374-9. [DOI] [PubMed] [Google Scholar]
  8. Bredt D. S., Hwang P. M., Glatt C. E., Lowenstein C., Reed R. R., Snyder S. H. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 1991 Jun 27;351(6329):714–718. doi: 10.1038/351714a0. [DOI] [PubMed] [Google Scholar]
  9. Bredt D. S., Hwang P. M., Snyder S. H. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990 Oct 25;347(6295):768–770. doi: 10.1038/347768a0. [DOI] [PubMed] [Google Scholar]
  10. Christofi F. L., Hanani M., Maudlej N., Wood J. D. Enteric glial cells are major contributors to formation of cyclic AMP in myenteric plexus cultures from adult guinea-pig small intestine. Neurosci Lett. 1993 Sep 3;159(1-2):107–110. doi: 10.1016/0304-3940(93)90810-8. [DOI] [PubMed] [Google Scholar]
  11. Desai K. M., Sessa W. C., Vane J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature. 1991 Jun 6;351(6326):477–479. doi: 10.1038/351477a0. [DOI] [PubMed] [Google Scholar]
  12. Eaker E. Y., Sallustio J. E. The distribution of novel intermediate filament proteins defines subpopulations of myenteric neurons in rat intestine. Gastroenterology. 1994 Sep;107(3):666–674. doi: 10.1016/0016-5085(94)90113-9. [DOI] [PubMed] [Google Scholar]
  13. Eizirik D. L., Björklund A., Welsh N. Interleukin-1-induced expression of nitric oxide synthase in insulin-producing cells is preceded by c-fos induction and depends on gene transcription and protein synthesis. FEBS Lett. 1993 Feb 8;317(1-2):62–66. doi: 10.1016/0014-5793(93)81492-i. [DOI] [PubMed] [Google Scholar]
  14. Freidin M., Bennett M. V., Kessler J. A. Cultured sympathetic neurons synthesize and release the cytokine interleukin 1 beta. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10440–10443. doi: 10.1073/pnas.89.21.10440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Förstermann U., Pollock J. S., Tracey W. R., Nakane M. Isoforms of nitric-oxide synthase: purification and regulation. Methods Enzymol. 1994;233:258–264. doi: 10.1016/s0076-6879(94)33029-8. [DOI] [PubMed] [Google Scholar]
  16. Geller D. A., Di Silvio M., Nussler A. K., Wang S. C., Shapiro R. A., Simmons R. L., Billiar T. R. Nitric oxide synthase expression is induced in hepatocytes in vivo during hepatic inflammation. J Surg Res. 1993 Oct;55(4):427–432. doi: 10.1006/jsre.1993.1164. [DOI] [PubMed] [Google Scholar]
  17. Geller D. A., Lowenstein C. J., Shapiro R. A., Nussler A. K., Di Silvio M., Wang S. C., Nakayama D. K., Simmons R. L., Snyder S. H., Billiar T. R. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3491–3495. doi: 10.1073/pnas.90.8.3491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Geller D. A., Nussler A. K., Di Silvio M., Lowenstein C. J., Shapiro R. A., Wang S. C., Simmons R. L., Billiar T. R. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. doi: 10.1073/pnas.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hammer B., Parker W. D., Jr, Bennett J. P., Jr NMDA receptors increase OH radicals in vivo by using nitric oxide synthase and protein kinase C. Neuroreport. 1993 Oct 25;5(1):72–74. doi: 10.1097/00001756-199310000-00018. [DOI] [PubMed] [Google Scholar]
  20. Huang P. L., Dawson T. M., Bredt D. S., Snyder S. H., Fishman M. C. Targeted disruption of the neuronal nitric oxide synthase gene. Cell. 1993 Dec 31;75(7):1273–1286. doi: 10.1016/0092-8674(93)90615-w. [DOI] [PubMed] [Google Scholar]
  21. Ikeda U., Maeda Y., Kawahara Y., Yokoyama M., Shimada K. Angiotensin II augments cytokine-stimulated nitric oxide synthesis in rat cardiac myocytes. Circulation. 1995 Nov 1;92(9):2683–2689. doi: 10.1161/01.cir.92.9.2683. [DOI] [PubMed] [Google Scholar]
  22. Imai T., Hirata Y., Kanno K., Marumo F. Induction of nitric oxide synthase by cyclic AMP in rat vascular smooth muscle cells. J Clin Invest. 1994 Feb;93(2):543–549. doi: 10.1172/JCI117005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jahnberg T., Abrahamsson H., Jansson G., Martinson J. Vagal gastric relaxation in the dog. Scand J Gastroenterol. 1977;12(2):221–224. doi: 10.1203/00006450-199404000-00022. [DOI] [PubMed] [Google Scholar]
  24. Jahnberg T., Martinson J., Hultén L., Fasth S. Dynamic gastric response to expansion before and after vagotomy. Scand J Gastroenterol. 1975;10(6):593–598. [PubMed] [Google Scholar]
  25. Kalberg C., Yung S. Y., Kessler J. A. The cholinergic stimulating effects of ciliary neurotrophic factor and leukemia inhibitory factor are mediated by protein kinase C. J Neurochem. 1993 Jan;60(1):145–152. doi: 10.1111/j.1471-4159.1993.tb05832.x. [DOI] [PubMed] [Google Scholar]
  26. Keshavarzian A., Iber F. L., Vaeth J. Gastric emptying in patients with insulin-requiring diabetes mellitus. Am J Gastroenterol. 1987 Jan;82(1):29–35. [PubMed] [Google Scholar]
  27. Kirchgessner A. L., Gershon M. D. Identification of vagal efferent fibers and putative target neurons in the enteric nervous system of the rat. J Comp Neurol. 1989 Jul 1;285(1):38–53. doi: 10.1002/cne.902850105. [DOI] [PubMed] [Google Scholar]
  28. Lindsay R. M., Harmar A. J. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature. 1989 Jan 26;337(6205):362–364. doi: 10.1038/337362a0. [DOI] [PubMed] [Google Scholar]
  29. Marletta M. A. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993 Jun 15;268(17):12231–12234. [PubMed] [Google Scholar]
  30. Matsumoto T., Mitchell J. A., Schmidt H. H., Kohlhaas K. L., Warner T. D., Förstermann U., Murad F. Nitric oxide synthase in ferret brain: localization and characterization. Br J Pharmacol. 1992 Nov;107(3):849–852. doi: 10.1111/j.1476-5381.1992.tb14535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McKenna T. M., Li S., Tao S. PKC mediates LPS- and phorbol-induced cardiac cell nitric oxide synthase activity and hypocontractility. Am J Physiol. 1995 Dec;269(6 Pt 2):H1891–H1898. doi: 10.1152/ajpheart.1995.269.6.H1891. [DOI] [PubMed] [Google Scholar]
  32. Mearin F., Mourelle M., Guarner F., Salas A., Riveros-Moreno V., Moncada S., Malagelada J. R. Patients with achalasia lack nitric oxide synthase in the gastro-oesophageal junction. Eur J Clin Invest. 1993 Nov;23(11):724–728. doi: 10.1111/j.1365-2362.1993.tb01292.x. [DOI] [PubMed] [Google Scholar]
  33. Nishida K., Harrison D. G., Navas J. P., Fisher A. A., Dockery S. P., Uematsu M., Nerem R. M., Alexander R. W., Murphy T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992 Nov;90(5):2092–2096. doi: 10.1172/JCI116092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nowak T. V., Harrington B., Kalbfleisch J. H., Amatruda J. M. Evidence for abnormal cholinergic neuromuscular transmission in diabetic rat small intestine. Gastroenterology. 1986 Jul;91(1):124–132. doi: 10.1016/0016-5085(86)90448-8. [DOI] [PubMed] [Google Scholar]
  35. Okada D. Protein kinase C modulates calcium sensitivity of nitric oxide synthase in cerebellar slices. J Neurochem. 1995 Mar;64(3):1298–1304. doi: 10.1046/j.1471-4159.1995.64031298.x. [DOI] [PubMed] [Google Scholar]
  36. Russell C. O., Gannan R., Coatsworth J., Neilsen R., Allen F., Hill L. D., Pope C. E., 2nd Relationship among esophageal dysfunction, diabetic gastroenteropathy, and peripheral neuropathy. Dig Dis Sci. 1983 Apr;28(4):289–293. doi: 10.1007/BF01324943. [DOI] [PubMed] [Google Scholar]
  37. Saffrey M. J., Hassall C. J., Hoyle C. H., Belai A., Moss J., Schmidt H. H., Förstermann U., Murad F., Burnstock G. Colocalization of nitric oxide synthase and NADPH-diaphorase in cultured myenteric neurones. Neuroreport. 1992 Apr;3(4):333–336. doi: 10.1097/00001756-199204000-00011. [DOI] [PubMed] [Google Scholar]
  38. Sessa W. C., Pritchard K., Seyedi N., Wang J., Hintze T. H. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994 Feb;74(2):349–353. doi: 10.1161/01.res.74.2.349. [DOI] [PubMed] [Google Scholar]
  39. Severn A., Wakelam M. J., Liew F. Y. The role of protein kinase C in the induction of nitric oxide synthesis by murine macrophages. Biochem Biophys Res Commun. 1992 Nov 16;188(3):997–1002. doi: 10.1016/0006-291x(92)91330-s. [DOI] [PubMed] [Google Scholar]
  40. Sharma K., Danoff T. M., DePiero A., Ziyadeh F. N. Enhanced expression of inducible nitric oxide synthase in murine macrophages and glomerular mesangial cells by elevated glucose levels: possible mediation via protein kinase C. Biochem Biophys Res Commun. 1995 Feb 6;207(1):80–88. doi: 10.1006/bbrc.1995.1156. [DOI] [PubMed] [Google Scholar]
  41. Soler N. G. Diabetic gastroparesis without autonomic neuropathy. Diabetes Care. 1980 Jan-Feb;3(1):200–201. doi: 10.2337/diacare.3.1.200. [DOI] [PubMed] [Google Scholar]
  42. Sunaga K., Ogihara M. Effects of calcium channel blockers and hydralazine on plasma glucose levels in streptozotocin-induced diabetic rats in vivo. Jpn J Pharmacol. 1990 Mar;52(3):449–455. doi: 10.1254/jjp.52.449. [DOI] [PubMed] [Google Scholar]
  43. Takahashi T., Kurosawa S., Wiley J. W., Owyang C. Mechanism for the gastrokinetic action of domperidone. In vitro studies in guinea pigs. Gastroenterology. 1991 Sep;101(3):703–710. doi: 10.1016/0016-5085(91)90528-s. [DOI] [PubMed] [Google Scholar]
  44. Takahashi T., Kusunoki M., Kantoh M., Yamamura T., Utsunomiya J. Effects of cholecystokinin octapeptide on contractile motility of guinea pig common bile duct. Am J Physiol. 1988 Jun;254(6 Pt 1):G819–G823. doi: 10.1152/ajpgi.1988.254.6.G819. [DOI] [PubMed] [Google Scholar]
  45. Takahashi T., Nakamura K., Itoh H., Sima A. A., Owyang C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology. 1997 Nov;113(5):1535–1544. doi: 10.1053/gast.1997.v113.pm9352855. [DOI] [PubMed] [Google Scholar]
  46. Takahashi T., Owyang C. Characterization of vagal pathways mediating gastric accommodation reflex in rats. J Physiol. 1997 Oct 15;504(Pt 2):479–488. doi: 10.1111/j.1469-7793.1997.479be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Takahashi T., Owyang C. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat. J Physiol. 1995 Apr 15;484(Pt 2):481–492. doi: 10.1113/jphysiol.1995.sp020680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Takahashi T., Tsunoda Y., Lu Y., Wiley J., Owyang C. Nicotinic receptor-evoked release of acetylcholine and somatostatin in the myenteric plexus is coupled to calcium influx via N-type calcium channels. J Pharmacol Exp Ther. 1992 Oct;263(1):1–5. [PubMed] [Google Scholar]
  49. Takasugi S., Ueda T., Kurata Y., Kodama M., Ezaki H., Fujii K. Neural and humoral factors influence gastric receptive relaxation in dogs. Jpn J Surg. 1982;12(3):208–213. doi: 10.1007/BF02469589. [DOI] [PubMed] [Google Scholar]
  50. Tolón R. M., Sánchez Franco F., de los Frailes M. T., Lorenzo M. J., Cacicedo L. Effect of potassium-induced depolarization on somatostatin gene expression in cultured fetal rat cerebrocortical cells. J Neurosci. 1994 Mar;14(3 Pt 1):1053–1059. doi: 10.1523/JNEUROSCI.14-03-01053.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tracey W. R., Nakane M., Pollock J. S., Förstermann U. Nitric oxide synthases in neuronal cells, macrophages and endothelium are NADPH diaphorases, but represent only a fraction of total cellular NADPH diaphorase activity. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1035–1040. doi: 10.1006/bbrc.1993.2148. [DOI] [PubMed] [Google Scholar]
  52. Troncon L. E., Thompson D. G., Ahluwalia N. K., Barlow J., Heggie L. Relations between upper abdominal symptoms and gastric distension abnormalities in dysmotility like functional dyspepsia and after vagotomy. Gut. 1995 Jul;37(1):17–22. doi: 10.1136/gut.37.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Vanderwinden J. M., Mailleux P., Schiffmann S. N., Vanderhaeghen J. J., De Laet M. H. Nitric oxide synthase activity in infantile hypertrophic pyloric stenosis. N Engl J Med. 1992 Aug 20;327(8):511–515. doi: 10.1056/NEJM199208203270802. [DOI] [PubMed] [Google Scholar]
  54. Verge V. M., Xu Z., Xu X. J., Wiesenfeld-Hallin Z., Hökfelt T. Marked increase in nitric oxide synthase mRNA in rat dorsal root ganglia after peripheral axotomy: in situ hybridization and functional studies. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11617–11621. doi: 10.1073/pnas.89.23.11617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wilbur B. G., Kelly K. A. Effect of proximal gastric, complete gastric, and truncal vagotomy on canine gastric electric activity, motility, and emptying. Ann Surg. 1973 Sep;178(3):295–303. doi: 10.1097/00000658-197309000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yuan Y., Granger H. J., Zawieja D. C., DeFily D. V., Chilian W. M. Histamine increases venular permeability via a phospholipase C-NO synthase-guanylate cyclase cascade. Am J Physiol. 1993 May;264(5 Pt 2):H1734–H1739. doi: 10.1152/ajpheart.1993.264.5.H1734. [DOI] [PubMed] [Google Scholar]
  57. Yunker A. M., Galligan J. J. Extrinsic denervation increases NADPH diaphorase staining in myenteric nerves of guinea pig ileum. Neurosci Lett. 1994 Feb 14;167(1-2):51–54. doi: 10.1016/0304-3940(94)91025-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES