Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 1;101(7):1530–1537. doi: 10.1172/JCI650

Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats.

F Cosentino 1, S Patton 1, L V d'Uscio 1, E R Werner 1, G Werner-Felmayer 1, P Moreau 1, T Malinski 1, T F Lüscher 1
PMCID: PMC508731  PMID: 9525996

Abstract

Constitutive nitric oxide synthase (cNOS) with insufficient cofactor (6R)-5,6,7,8-tetrahydrobiopterin (H4B) may generate damaging superoxide (O2-). This study was designed to determine whether cNOS-dependent generation of O2- occurs in spontaneously hypertensive rats (SHR) before the onset of hypertension. Aortas from 4-wk-old SHR and Wistar-Kyoto rats were used. cNOS was stimulated by calcium ionophore A23187. In situ measurements of nitric oxide and hydrogen peroxide by electrochemical sensors and O2- production by chemiluminescence method were performed. Isometric tension was continuously recorded. H4B by high performance liquid chromatography and [3H]citrulline assay were determined in homogenized tissue. The A23187-stimulated production of O2- and its superoxide dismutase product hydrogen peroxide were significantly higher, whereas nitric oxide release was reduced in SHR aortas, with opposite results in the presence of exogenous H4B. Furthermore, NG-monomethyl-L-arginine inhibited the generation of cNOS-dependent O2- by approximately 70%. Natural H4B levels were similar in both strains; however, equivalent cNOS activity required additional H4B in SHR. The endothelium-dependent relaxations to A23187 were significantly inhibited by catalase, and enhanced by superoxide dismutase, only in SHR; however, these enzymes had no effect in the presence of H4B. Thus, dysfunctional cNOS may be a source of O2- in prehypertensive SHR and contribute to the development of hypertension and its vascular complications.

Full Text

The Full Text of this article is available as a PDF (201.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Chen J., Ischiropoulos H., Crow J. P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–240. doi: 10.1016/s0076-6879(94)33026-3. [DOI] [PubMed] [Google Scholar]
  2. Burke T. M., Wolin M. S. Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation. Am J Physiol. 1987 Apr;252(4 Pt 2):H721–H732. doi: 10.1152/ajpheart.1987.252.4.H721. [DOI] [PubMed] [Google Scholar]
  3. Cosentino F., Katusić Z. S. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation. 1995 Jan 1;91(1):139–144. doi: 10.1161/01.cir.91.1.139. [DOI] [PubMed] [Google Scholar]
  4. Cosentino F., Sill J. C., Katusić Z. S. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension. 1994 Feb;23(2):229–235. doi: 10.1161/01.hyp.23.2.229. [DOI] [PubMed] [Google Scholar]
  5. Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
  6. Gyllenhammar H. Lucigenin chemiluminescence in the assessment of neutrophil superoxide production. J Immunol Methods. 1987 Mar 12;97(2):209–213. doi: 10.1016/0022-1759(87)90461-3. [DOI] [PubMed] [Google Scholar]
  7. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet. 1994 Sep 10;344(8924):721–724. doi: 10.1016/s0140-6736(94)92211-x. [DOI] [PubMed] [Google Scholar]
  8. Halliwell B., Gutteridge J. M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85. doi: 10.1016/0076-6879(90)86093-b. [DOI] [PubMed] [Google Scholar]
  9. Huk I., Nanobashvili J., Neumayer C., Punz A., Mueller M., Afkhampour K., Mittlboeck M., Losert U., Polterauer P., Roth E. L-arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circulation. 1997 Jul 15;96(2):667–675. doi: 10.1161/01.cir.96.2.667. [DOI] [PubMed] [Google Scholar]
  10. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iwama Y., Kato T., Muramatsu M., Asano H., Shimizu K., Toki Y., Miyazaki Y., Okumura K., Hashimoto H., Ito T. Correlation with blood pressure of the acetylcholine-induced endothelium-derived contracting factor in the rat aorta. Hypertension. 1992 Apr;19(4):326–332. doi: 10.1161/01.hyp.19.4.326. [DOI] [PubMed] [Google Scholar]
  12. Jameson M., Dai F. X., Lüscher T., Skopec J., Diederich A., Diederich D. Endothelium-derived contracting factors in resistance arteries of young spontaneously hypertensive rats before development of overt hypertension. Hypertension. 1993 Mar;21(3):280–288. doi: 10.1161/01.hyp.21.3.280. [DOI] [PubMed] [Google Scholar]
  13. Klatt P., Schmidt K., Lehner D., Glatter O., Bächinger H. P., Mayer B. Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J. 1995 Aug 1;14(15):3687–3695. doi: 10.1002/j.1460-2075.1995.tb00038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kontos H. A. George E. Brown memorial lecture. Oxygen radicals in cerebral vascular injury. Circ Res. 1985 Oct;57(4):508–516. doi: 10.1161/01.res.57.4.508. [DOI] [PubMed] [Google Scholar]
  16. Kumar K. V., Das U. N. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic Res Commun. 1993;19(1):59–66. doi: 10.3109/10715769309056499. [DOI] [PubMed] [Google Scholar]
  17. Malinski T., Kapturczak M., Dayharsh J., Bohr D. Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun. 1993 Jul 30;194(2):654–658. doi: 10.1006/bbrc.1993.1871. [DOI] [PubMed] [Google Scholar]
  18. Malinski T., Taha Z. Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature. 1992 Aug 20;358(6388):676–678. doi: 10.1038/358676a0. [DOI] [PubMed] [Google Scholar]
  19. Mayer B., Werner E. R. In search of a function for tetrahydrobiopterin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995 May;351(5):453–463. doi: 10.1007/BF00171035. [DOI] [PubMed] [Google Scholar]
  20. Mohazzab K. M., Kaminski P. M., Wolin M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol. 1994 Jun;266(6 Pt 2):H2568–H2572. doi: 10.1152/ajpheart.1994.266.6.H2568. [DOI] [PubMed] [Google Scholar]
  21. Nakazono K., Watanabe N., Matsuno K., Sasaki J., Sato T., Inoue M. Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10045–10048. doi: 10.1073/pnas.88.22.10045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Panza J. A., Casino P. R., Kilcoyne C. M., Quyyumi A. A. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation. 1993 May;87(5):1468–1474. doi: 10.1161/01.cir.87.5.1468. [DOI] [PubMed] [Google Scholar]
  23. Panza J. A., García C. E., Kilcoyne C. M., Quyyumi A. A., Cannon R. O., 3rd Impaired endothelium-dependent vasodilation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single signal transduction pathway. Circulation. 1995 Mar 15;91(6):1732–1738. doi: 10.1161/01.cir.91.6.1732. [DOI] [PubMed] [Google Scholar]
  24. Pou S., Pou W. S., Bredt D. S., Snyder S. H., Rosen G. M. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem. 1992 Dec 5;267(34):24173–24176. [PubMed] [Google Scholar]
  25. Prabha P. S., Das U. N., Koratkar R., Sagar P. S., Ramesh G. Free radical generation, lipid peroxidation and essential fatty acids in uncontrolled essential hypertension. Prostaglandins Leukot Essent Fatty Acids. 1990 Sep;41(1):27–33. doi: 10.1016/0952-3278(90)90127-7. [DOI] [PubMed] [Google Scholar]
  26. Pritchard K. A., Jr, Groszek L., Smalley D. M., Sessa W. C., Wu M., Villalon P., Wolin M. S., Stemerman M. B. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res. 1995 Sep;77(3):510–518. doi: 10.1161/01.res.77.3.510. [DOI] [PubMed] [Google Scholar]
  27. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Salvemini D., Radziszewski W., Mollace V., Moore A., Willoughby D., Vane J. Diphenylene iodonium, an inhibitor of free radical formation, inhibits platelet aggregation. Eur J Pharmacol. 1991 Jun 18;199(1):15–18. doi: 10.1016/0014-2999(91)90631-y. [DOI] [PubMed] [Google Scholar]
  29. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 1991 Jan;5(1):98–103. doi: 10.1096/fasebj.5.1.1703974. [DOI] [PubMed] [Google Scholar]
  30. Tschudi M. R., Mesaros S., Lüscher T. F., Malinski T. Direct in situ measurement of nitric oxide in mesenteric resistance arteries. Increased decomposition by superoxide in hypertension. Hypertension. 1996 Jan;27(1):32–35. doi: 10.1161/01.hyp.27.1.32. [DOI] [PubMed] [Google Scholar]
  31. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]
  32. Werner-Felmayer G., Prast H., Werner E. R., Philippu A., Wachter H. Induction of GTP cyclohydrolase I by bacterial lipopolysaccharide in the rat. FEBS Lett. 1993 May 17;322(3):223–226. doi: 10.1016/0014-5793(93)81574-j. [DOI] [PubMed] [Google Scholar]
  33. Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Mayer B., Reibnegger G., Weiss G., Wachter H. Ca2+/calmodulin-dependent nitric oxide synthase activity in the human cervix carcinoma cell line ME-180. Biochem J. 1993 Jan 15;289(Pt 2):357–361. doi: 10.1042/bj2890357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES