Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1551–1556. doi: 10.1172/JCI1568

Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia.

H M Kwon 1, G Sangiorgi 1, E L Ritman 1, C McKenna 1, D R Holmes Jr 1, R S Schwartz 1, A Lerman 1
PMCID: PMC508734  PMID: 9541483

Abstract

Coronary arteries contain a network of vasa vasorum in the adventitia. The three-dimensional anatomy of the vasa vasorum in early coronary atherosclerosis is unknown. This study was designed to visualize and quantitate the three-dimensional spatial pattern of vasa vasorum in normal and experimental hypercholesterolemic porcine coronary arteries, using a novel computed tomography technique. Animals were killed after being fed either a high cholesterol diet (n = 4) or a control diet (n = 4) for 12 wk. The proximal left anterior descending coronary artery was removed from the heart, scanned, and reconstructed, and quantitation of vasa vasorum density was performed. Two different types of vasa vasorum were defined: first-order vasa vasorum ran longitudinally parallel to the vessel and second-order originated from first-order vasa circumferentially around the vessel wall. Compared with controls in hypercholesterolemic coronary arteries, there was a significant increase in the area of the vessel wall (3.86+/-0.22 vs. 8.07+/-0.45 mm2, respectively, P < 0.01) and in the density of vasa vasorum (1. 84+/-0.05/mm2 vs. 4.73+/-0.24/mm2; respectively, P = 0.0001). This occurred especially by an increase of second-order vasa vasorum and disorientation of normal vasa vasorum spatial pattern. This study suggests that adventitial neovascularization of vasa vasorum occurs in experimental hypercholesterolemic coronary arteries and may be a part of the early atherosclerotic remodeling process.

Full Text

The Full Text of this article is available as a PDF (342.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain C. C., Poon L. S., Chan C. S., Richmond W., Fu P. C. Enzymatic determination of total serum cholesterol. Clin Chem. 1974 Apr;20(4):470–475. [PubMed] [Google Scholar]
  2. Barger A. C., Beeuwkes R., 3rd, Lainey L. L., Silverman K. J. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984 Jan 19;310(3):175–177. doi: 10.1056/NEJM198401193100307. [DOI] [PubMed] [Google Scholar]
  3. Barker S. G., Beesley J. E., Baskerville P. A., Martin J. F. The influence of the adventitia on the presence of smooth muscle cells and macrophages in the arterial intima. Eur J Vasc Endovasc Surg. 1995 Feb;9(2):222–227. doi: 10.1016/s1078-5884(05)80094-2. [DOI] [PubMed] [Google Scholar]
  4. Barker S. G., Causton B. E., Baskerville P. A., Gent S., Martin J. F. The vasa vasorum of the rabbit carotid artery. J Anat. 1992 Apr;180(Pt 2):225–231. [PMC free article] [PubMed] [Google Scholar]
  5. Barker S. G., Talbert A., Cottam S., Baskerville P. A., Martin J. F. Arterial intimal hyperplasia after occlusion of the adventitial vasa vasorum in the pig. Arterioscler Thromb. 1993 Jan;13(1):70–77. doi: 10.1161/01.atv.13.1.70. [DOI] [PubMed] [Google Scholar]
  6. Barker S. G., Tilling L. C., Miller G. C., Beesley J. E., Fleetwood G., Stavri G. T., Baskerville P. A., Martin J. F. The adventitia and atherogenesis: removal initiates intimal proliferation in the rabbit which regresses on generation of a 'neoadventitia'. Atherosclerosis. 1994 Feb;105(2):131–144. doi: 10.1016/0021-9150(94)90043-4. [DOI] [PubMed] [Google Scholar]
  7. Booth R. F., Martin J. F., Honey A. C., Hassall D. G., Beesley J. E., Moncada S. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis. 1989 Apr;76(2-3):257–268. doi: 10.1016/0021-9150(89)90109-3. [DOI] [PubMed] [Google Scholar]
  8. Brooks P. C., Clark R. A., Cheresh D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994 Apr 22;264(5158):569–571. doi: 10.1126/science.7512751. [DOI] [PubMed] [Google Scholar]
  9. Chilian W. M. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation. 1997 Jan 21;95(2):522–528. doi: 10.1161/01.cir.95.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Couffinhal T., Kearney M., Witzenbichler B., Chen D., Murohara T., Losordo D. W., Symes J., Isner J. M. Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in normal and atherosclerotic human arteries. Am J Pathol. 1997 May;150(5):1673–1685. [PMC free article] [PubMed] [Google Scholar]
  11. Cuevas P., Gonzalez A. M., Carceller F., Baird A. Vascular response to basic fibroblast growth factor when infused onto the normal adventitia or into the injured media of the rat carotid artery. Circ Res. 1991 Aug;69(2):360–369. doi: 10.1161/01.res.69.2.360. [DOI] [PubMed] [Google Scholar]
  12. Drake C. J., Cheresh D. A., Little C. D. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci. 1995 Jul;108(Pt 7):2655–2661. doi: 10.1242/jcs.108.7.2655. [DOI] [PubMed] [Google Scholar]
  13. Edelman E. R., Nugent M. A., Smith L. T., Karnovsky M. J. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest. 1992 Feb;89(2):465–473. doi: 10.1172/JCI115607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Flannery B. P., Deckman H. W., Roberge W. G., D'Amico K. L. Three-Dimensional X-ray Microtomography. Science. 1987 Sep 18;237(4821):1439–1444. doi: 10.1126/science.237.4821.1439. [DOI] [PubMed] [Google Scholar]
  15. Fukuo K., Inoue T., Morimoto S., Nakahashi T., Yasuda O., Kitano S., Sasada R., Ogihara T. Nitric oxide mediates cytotoxicity and basic fibroblast growth factor release in cultured vascular smooth muscle cells. A possible mechanism of neovascularization in atherosclerotic plaques. J Clin Invest. 1995 Feb;95(2):669–676. doi: 10.1172/JCI117712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. GEIRINGER E. Intimal vascularization and atherosclerosis. J Pathol Bacteriol. 1951 Apr;63(2):201–211. doi: 10.1002/path.1700630204. [DOI] [PubMed] [Google Scholar]
  17. Heistad D. D., Armstrong M. L. Blood flow through vasa vasorum of coronary arteries in atherosclerotic monkeys. Arteriosclerosis. 1986 May-Jun;6(3):326–331. doi: 10.1161/01.atv.6.3.326. [DOI] [PubMed] [Google Scholar]
  18. Heistad D. D., Marcus M. L., Larsen G. E., Armstrong M. L. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol. 1981 May;240(5):H781–H787. doi: 10.1152/ajpheart.1981.240.5.H781. [DOI] [PubMed] [Google Scholar]
  19. Huang J. S. Alpha-2-macroglobulin--a modulator for growth factors? Am J Respir Cell Mol Biol. 1989 Sep;1(3):169–170. doi: 10.1165/ajrcmb/1.3.169. [DOI] [PubMed] [Google Scholar]
  20. Isner J. M. Vasa vasorum: therapeutic implications. Cathet Cardiovasc Diagn. 1996 Nov;39(3):221–223. doi: 10.1002/(SICI)1097-0304(199611)39:3<221::AID-CCD2>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  21. James K. Interactions between cytokines and alpha 2-macroglobulin. Immunol Today. 1990 May;11(5):163–166. doi: 10.1016/0167-5699(90)90067-j. [DOI] [PubMed] [Google Scholar]
  22. Jamieson D. G., Usher D. C., Rader D. J., Lavi E. Apolipoprotein(a) deposition in atherosclerotic plaques of cerebral vessels. A potential role for endothelial cells in lesion formation. Am J Pathol. 1995 Dec;147(6):1567–1574. [PMC free article] [PubMed] [Google Scholar]
  23. Kockx M. M., De Meyer G. R., Bortier H., de Meyere N., Muhring J., Bakker A., Jacob W., Van Vaeck L., Herman A. Luminal foam cell accumulation is associated with smooth muscle cell death in the intimal thickening of human saphenous vein grafts. Circulation. 1996 Sep 15;94(6):1255–1262. doi: 10.1161/01.cir.94.6.1255. [DOI] [PubMed] [Google Scholar]
  24. Kumamoto M., Nakashima Y., Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995 Apr;26(4):450–456. doi: 10.1016/0046-8177(95)90148-5. [DOI] [PubMed] [Google Scholar]
  25. Lerman A., Holmes D. R., Jr, Bell M. R., Garratt K. N., Nishimura R. A., Burnett J. C., Jr Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation. 1995 Nov 1;92(9):2426–2431. doi: 10.1161/01.cir.92.9.2426. [DOI] [PubMed] [Google Scholar]
  26. Lerman A., Webster M. W., Chesebro J. H., Edwards W. D., Wei C. M., Fuster V., Burnett J. C., Jr Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation. 1993 Dec;88(6):2923–2928. doi: 10.1161/01.cir.88.6.2923. [DOI] [PubMed] [Google Scholar]
  27. Lupu F., Heim D., Bachmann F., Kruithof E. K. Expression of LDL receptor-related protein/alpha 2-macroglobulin receptor in human normal and atherosclerotic arteries. Arterioscler Thromb. 1994 Sep;14(9):1438–1444. doi: 10.1161/01.atv.14.9.1438. [DOI] [PubMed] [Google Scholar]
  28. Martin J. F., Booth R. F., Moncada S. Arterial wall hypoxia following hyperfusion through the vasa vasorum is an initial lesion in atherosclerosis. Eur J Clin Invest. 1990 Dec;20(6):588–592. doi: 10.1111/j.1365-2362.1990.tb01905.x. [DOI] [PubMed] [Google Scholar]
  29. Martin J. F., Booth R. F., Moncada S. Arterial wall hypoxia following thrombosis of the vasa vasorum is an initial lesion in atherosclerosis. Eur J Clin Invest. 1991 Jun;21(3):355–359. doi: 10.1111/j.1365-2362.1991.tb01382.x. [DOI] [PubMed] [Google Scholar]
  30. Ribeiro S. M., Schultz-Cherry S., Murphy-Ullrich J. E. Heparin-binding vitronectin up-regulates latent TGF-beta production by bovine aortic endothelial cells. J Cell Sci. 1995 Apr;108(Pt 4):1553–1561. doi: 10.1242/jcs.108.4.1553. [DOI] [PubMed] [Google Scholar]
  31. Stavri G. T., Zachary I. C., Baskerville P. A., Martin J. F., Erusalimsky J. D. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation. 1995 Jul 1;92(1):11–14. doi: 10.1161/01.cir.92.1.11. [DOI] [PubMed] [Google Scholar]
  32. Waltenberger J., Mayr U., Pentz S., Hombach V. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation. 1996 Oct 1;94(7):1647–1654. doi: 10.1161/01.cir.94.7.1647. [DOI] [PubMed] [Google Scholar]
  33. Werber A. H., Heistad D. D. Diffusional support of arteries. Am J Physiol. 1985 Jun;248(6 Pt 2):H901–H906. doi: 10.1152/ajpheart.1985.248.6.H901. [DOI] [PubMed] [Google Scholar]
  34. Wilens S. L., Malcolm J. A., Vazquez J. M. Experimental infarction (medial necrosis) of the dog's aorta. Am J Pathol. 1965 Oct;47(4):695–711. [PMC free article] [PubMed] [Google Scholar]
  35. Williams J. K., Armstrong M. L., Heistad D. D. Vasa vasorum in atherosclerotic coronary arteries: responses to vasoactive stimuli and regression of atherosclerosis. Circ Res. 1988 Mar;62(3):515–523. doi: 10.1161/01.res.62.3.515. [DOI] [PubMed] [Google Scholar]
  36. Williams J. K., Heistad D. D. Les vasa vasorum des artères. J Mal Vasc. 1996;21 (Suppl 100):266–269. [PubMed] [Google Scholar]
  37. Wolinsky H., Glagov S. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res. 1967 Apr;20(4):409–421. doi: 10.1161/01.res.20.4.409. [DOI] [PubMed] [Google Scholar]
  38. Zamir M., Silver M. D. Vasculature in the walls of human coronary arteries. Arch Pathol Lab Med. 1985 Jul;109(7):659–662. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES