Abstract
Previously we presented suggestive evidence from an F2 segregating population for an interaction on blood pressure (BP) between quantitative trait loci (QTL) on rat chromosomes (Chr) 2 and 10. To prove the existence of such an interaction, we developed congenic strains for Chr 2 and 10 by introgressing the low BP QTL alleles into the Dahl salt-sensitive (S) strain. A double congenic strain was also constructed with both the Chr 2 and 10 low BP QTL alleles on the S background. The four strains (S, Chr 2 congenic, Chr 10 congenic, and Chr 2/10 double congenic) were studied for BP response to increased salt intake. An analysis of variance showed significant main effects of Chr 2, Chr 10, and a significant interaction between Chr 2 and 10 on BP and heart weight (all P < 0.0001). The interaction accounted for 24 mmHg of BP and 79 mg of heart weight. Thus, the discovery and proof of epistatic interactions are clearly critical to understanding the genetics of blood pressure.
Full Text
The Full Text of this article is available as a PDF (147.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buñag R. D., Butterfield J. Tail-cuff blood pressure measurement without external preheating in awake rats. Hypertension. 1982 Nov-Dec;4(6):898–903. doi: 10.1161/01.hyp.4.6.898. [DOI] [PubMed] [Google Scholar]
- Cicila G. T., Dukhanina O. I., Kurtz T. W., Walder R., Garrett M. R., Dene H., Rapp J. P. Blood pressure and survival of a chromosome 7 congenic strain bred from Dahl rats. Mamm Genome. 1997 Dec;8(12):896–902. doi: 10.1007/s003359900607. [DOI] [PubMed] [Google Scholar]
- Curtis D. Genetic dissection of complex traits. Nat Genet. 1996 Apr;12(4):356–358. doi: 10.1038/ng0496-356. [DOI] [PubMed] [Google Scholar]
- Deng A. Y., Dene H., Rapp J. P. Congenic strains for the blood pressure quantitative trait locus on rat chromosome 2. Hypertension. 1997 Aug;30(2 Pt 1):199–202. doi: 10.1161/01.hyp.30.2.199. [DOI] [PubMed] [Google Scholar]
- Deng Y., Rapp J. P. Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic peptide receptor genes using Dahl salt-sensitive rats. Nat Genet. 1992 Jul;1(4):267–272. doi: 10.1038/ng0792-267. [DOI] [PubMed] [Google Scholar]
- Dukhanina O. I., Dene H., Deng A. Y., Choi C. R., Hoebee B., Rapp J. P. Linkage map and congenic strains to localize blood pressure QTL on rat chromosome 10. Mamm Genome. 1997 Apr;8(4):229–235. doi: 10.1007/s003359900399. [DOI] [PubMed] [Google Scholar]
- Fijneman R. J., de Vries S. S., Jansen R. C., Demant P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet. 1996 Dec;14(4):465–467. doi: 10.1038/ng1296-465. [DOI] [PubMed] [Google Scholar]
- Frankel W. N., Johnson E. W., Lutz C. M. Congenic strains reveal effects of the epilepsy quantitative trait locus, El2, separate from other El loci. Mamm Genome. 1995 Dec;6(12):839–843. doi: 10.1007/BF00292432. [DOI] [PubMed] [Google Scholar]
- Frankel W. N., Schork N. J. Who's afraid of epistasis? Nat Genet. 1996 Dec;14(4):371–373. doi: 10.1038/ng1296-371. [DOI] [PubMed] [Google Scholar]
- Hamet P., Kaiser M. A., Sun Y., Pagé V., Vincent M., Kren V., Pravenec M., Kunes J., Tremblay J., Samani N. J. HSP27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension. 1996 Dec;28(6):1112–1117. [PubMed] [Google Scholar]
- Harris E. L., Phelan E. L., Thompson C. M., Millar J. A., Grigor M. R. Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J Hypertens. 1995 Apr;13(4):397–404. [PubMed] [Google Scholar]
- Julier C., Delépine M., Keavney B., Terwilliger J., Davis S., Weeks D. E., Bui T., Jeunemaître X., Velho G., Froguel P. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet. 1997 Nov;6(12):2077–2085. doi: 10.1093/hmg/6.12.2077. [DOI] [PubMed] [Google Scholar]
- Kapuscinski M., Charchar F., Innes B., Mitchell G. A., Norman T. L., Harrap S. B. Nerve growth factor gene and hypertension in spontaneously hypertensive rats. J Hypertens. 1996 Feb;14(2):191–197. doi: 10.1097/00004872-199602000-00007. [DOI] [PubMed] [Google Scholar]
- Kunes J., Kren V., Klír P., Zicha J., Pravenec M. Genetic determination of heart and kidney weights studied using a set of recombinant inbred strains: the relationship to blood pressure. J Hypertens. 1990 Dec;8(12):1091–1095. doi: 10.1097/00004872-199012000-00004. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Schork N. J. Genetic dissection of complex traits. Science. 1994 Sep 30;265(5181):2037–2048. doi: 10.1126/science.8091226. [DOI] [PubMed] [Google Scholar]
- Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
- Lord C. J., Bohlander S. K., Hopes E. A., Montague C. T., Hill N. J., Prins J. B., Renjilian R. J., Peterson L. B., Wicker L. S., Todd J. A. Mapping the diabetes polygene Idd3 on mouse chromosome 3 by use of novel congenic strains. Mamm Genome. 1995 Sep;6(9):563–570. doi: 10.1007/BF00352359. [DOI] [PubMed] [Google Scholar]
- Morel L., Yu Y., Blenman K. R., Caldwell R. A., Wakeland E. K. Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm Genome. 1996 May;7(5):335–339. doi: 10.1007/s003359900098. [DOI] [PubMed] [Google Scholar]
- Pravenec M., Gauguier D., Schott J. J., Buard J., Kren V., Bila V., Szpirer C., Szpirer J., Wang J. M., Huang H. Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest. 1995 Oct;96(4):1973–1978. doi: 10.1172/JCI118244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapp J. P., Deng A. Y. Detection and positional cloning of blood pressure quantitative trait loci: is it possible? Identifying the genes for genetic hypertension. Hypertension. 1995 Jun;25(6):1121–1128. doi: 10.1161/01.hyp.25.6.1121. [DOI] [PubMed] [Google Scholar]
- Serreze D. V., Prochazka M., Reifsnyder P. C., Bridgett M. M., Leiter E. H. Use of recombinant congenic and congenic strains of NOD mice to identify a new insulin-dependent diabetes resistance gene. J Exp Med. 1994 Oct 1;180(4):1553–1558. doi: 10.1084/jem.180.4.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanase H., Yamori Y., Hansen C. T., Lovenberg W. Heart size in inbred strains of rats. Part 1. Genetic determination of the development of cardiovascular enlargement in rats. Hypertension. 1982 Nov-Dec;4(6):864–872. doi: 10.1161/01.hyp.4.6.864. [DOI] [PubMed] [Google Scholar]
- Tanksley S. D. Mapping polygenes. Annu Rev Genet. 1993;27:205–233. doi: 10.1146/annurev.ge.27.120193.001225. [DOI] [PubMed] [Google Scholar]
- Witte J. S., Elston R. C., Schork N. J. Genetic dissection of complex traits. Nat Genet. 1996 Apr;12(4):355–358. doi: 10.1038/ng0496-355. [DOI] [PubMed] [Google Scholar]
- Yui M. A., Muralidharan K., Moreno-Altamirano B., Perrin G., Chestnut K., Wakeland E. K. Production of congenic mouse strains carrying NOD-derived diabetogenic genetic intervals: an approach for the genetic dissection of complex traits. Mamm Genome. 1996 May;7(5):331–334. doi: 10.1007/s003359900097. [DOI] [PubMed] [Google Scholar]
- Zhang Q. Y., Dene H., Deng A. Y., Garrett M. R., Jacob H. J., Rapp J. P. Interval mapping and congenic strains for a blood pressure QTL on rat chromosome 13. Mamm Genome. 1997 Sep;8(9):636–641. doi: 10.1007/s003359900528. [DOI] [PubMed] [Google Scholar]
- van Wezel T., Stassen A. P., Moen C. J., Hart A. A., van der Valk M. A., Demant P. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat Genet. 1996 Dec;14(4):468–470. doi: 10.1038/ng1296-468. [DOI] [PubMed] [Google Scholar]