Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1623–1632. doi: 10.1172/JCI1245

Apoptosis in insulin-secreting cells. Evidence for the role of intracellular Ca2+ stores and arachidonic acid metabolism.

Y P Zhou 1, D Teng 1, F Dralyuk 1, D Ostrega 1, M W Roe 1, L Philipson 1, K S Polonsky 1
PMCID: PMC508743  PMID: 9541492

Abstract

This study investigated the role of intracellular free Ca2+ concentration ([Ca2+]i) in apoptosis in MIN6 cells, an insulin secreting cell line, and in mouse islets. Thapsigargin, an inhibitor of sarcoendoplasmic reticulum Ca2+-ATPases (SERCA), caused a time- and concentration-dependent decrease in the viability of MIN6 cells and an increase in DNA fragmentation and nuclear chromatin staining changes characteristic of apoptosis. Two structurally distinct SERCA inhibitors, cyclopiazonic acid and 2,5-di-[t-butyl]-1,4-hydroquinone also caused apoptosis, but agents that increased [Ca2+]i by other mechanisms did not induce apoptosis in MIN6 cells. Carbachol- or ionomycin-releasible intracellular Ca2+ stores were completely depleted in cells treated by SERCA inhibitors, but not by other agents that increase [Ca2+]i. The ability of thapsigargin to induce cell death was not affected by blocking Ca2+ influx or by clamping [Ca2+]i with a cytosolic Ca2+ buffer suggesting that the process did not depend on changes in [Ca2+]i per se. However, application of the lipoxygenase inhibitors 5,8,11-eicosatrienoic acid and nordihydroguaiaretic acid partially prevented MIN6 cell apoptosis, while exposure of cells to the product of lipoxygenase, 12-hydroxy-[5,8,10,14]-eicosatetraenoic acid, caused apoptosis. In contrast, inhibition of cyclooxygenase with indomethacin did not abolish thapsigargin-induced apoptosis in MIN6 cells. Our findings indicate that thapsigargin causes apoptosis in MIN6 cells by depleting intracellular Ca2+ stores and leading to release of intermediate metabolites of arachidonic acid metabolism.

Full Text

The Full Text of this article is available as a PDF (298.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bian X., Hughes F. M., Jr, Huang Y., Cidlowski J. A., Putney J. W., Jr Roles of cytoplasmic Ca2+ and intracellular Ca2+ stores in induction and suppression of apoptosis in S49 cells. Am J Physiol. 1997 Apr;272(4 Pt 1):C1241–C1249. doi: 10.1152/ajpcell.1997.272.4.C1241. [DOI] [PubMed] [Google Scholar]
  3. Burkart V., Kolb H. Protection of islet cells from inflammatory cell death in vitro. Clin Exp Immunol. 1993 Aug;93(2):273–278. doi: 10.1111/j.1365-2249.1993.tb07979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  5. Dypbukt J. M., Ankarcrona M., Burkitt M., Sjöholm A., Ström K., Orrenius S., Nicotera P. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem. 1994 Dec 2;269(48):30553–30560. [PubMed] [Google Scholar]
  6. Furuya Y., Lundmo P., Short A. D., Gill D. L., Isaacs J. T. The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res. 1994 Dec 1;54(23):6167–6175. [PubMed] [Google Scholar]
  7. Gilon P., Nenquin M., Henquin J. C. Muscarinic stimulation exerts both stimulatory and inhibitory effects on the concentration of cytoplasmic Ca2+ in the electrically excitable pancreatic B-cell. Biochem J. 1995 Oct 1;311(Pt 1):259–267. doi: 10.1042/bj3110259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gottlieb R. A., Burleson K. O., Kloner R. A., Babior B. M., Engler R. L. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994 Oct;94(4):1621–1628. doi: 10.1172/JCI117504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guest P. C., Bailyes E. M., Hutton J. C. Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic beta-cell. Biochem J. 1997 Apr 15;323(Pt 2):445–450. doi: 10.1042/bj3230445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. He H., Lam M., McCormick T. S., Distelhorst C. W. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol. 1997 Sep 22;138(6):1219–1228. doi: 10.1083/jcb.138.6.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoorens A., Van de Casteele M., Klöppel G., Pipeleers D. Glucose promotes survival of rat pancreatic beta cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest. 1996 Oct 1;98(7):1568–1574. doi: 10.1172/JCI118950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inesi G., Sagara Y. Thapsigargin, a high affinity and global inhibitor of intracellular Ca2+ transport ATPases. Arch Biochem Biophys. 1992 Nov 1;298(2):313–317. doi: 10.1016/0003-9861(92)90416-t. [DOI] [PubMed] [Google Scholar]
  13. Jiang S., Chow S. C., Nicotera P., Orrenius S. Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca(2+)-ATPase inhibitor thapsigargin. Exp Cell Res. 1994 May;212(1):84–92. doi: 10.1006/excr.1994.1121. [DOI] [PubMed] [Google Scholar]
  14. Juntti-Berggren L., Larsson O., Rorsman P., Ammälä C., Bokvist K., Wåhlander K., Nicotera P., Dypbukt J., Orrenius S., Hallberg A. Increased activity of L-type Ca2+ channels exposed to serum from patients with type I diabetes. Science. 1993 Jul 2;261(5117):86–90. doi: 10.1126/science.7686306. [DOI] [PubMed] [Google Scholar]
  15. Kaneko Y., Tsukamoto A. Thapsigargin-induced persistent intracellular calcium pool depletion and apoptosis in human hepatoma cells. Cancer Lett. 1994 May 16;79(2):147–155. doi: 10.1016/0304-3835(94)90253-4. [DOI] [PubMed] [Google Scholar]
  16. Kaneto H., Fujii J., Myint T., Miyazawa N., Islam K. N., Kawasaki Y., Suzuki K., Nakamura M., Tatsumi H., Yamasaki Y. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction. Biochem J. 1996 Dec 15;320(Pt 3):855–863. doi: 10.1042/bj3200855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kaneto H., Fujii J., Seo H. G., Suzuki K., Matsuoka T., Nakamura M., Tatsumi H., Yamasaki Y., Kamada T., Taniguchi N. Apoptotic cell death triggered by nitric oxide in pancreatic beta-cells. Diabetes. 1995 Jul;44(7):733–738. doi: 10.2337/diab.44.7.733. [DOI] [PubMed] [Google Scholar]
  18. Kurrer M. O., Pakala S. V., Hanson H. L., Katz J. D. Beta cell apoptosis in T cell-mediated autoimmune diabetes. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):213–218. doi: 10.1073/pnas.94.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  20. Levick V., Coffey H., D'Mello S. R. Opposing effects of thapsigargin on the survival of developing cerebellar granule neurons in culture. Brain Res. 1995 Apr 10;676(2):325–335. doi: 10.1016/0006-8993(95)00115-7. [DOI] [PubMed] [Google Scholar]
  21. Lorenzo A., Razzaboni B., Weir G. C., Yankner B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature. 1994 Apr 21;368(6473):756–760. doi: 10.1038/368756a0. [DOI] [PubMed] [Google Scholar]
  22. Loweth A. C., Williams G. T., Scarpello J. H., Morgan N. G. Heterotrimeric G-proteins are implicated in the regulation of apoptosis in pancreatic beta-cells. Exp Cell Res. 1996 Nov 25;229(1):69–76. doi: 10.1006/excr.1996.0344. [DOI] [PubMed] [Google Scholar]
  23. Ma Z., Ramanadham S., Corbett J. A., Bohrer A., Gross R. W., McDaniel M. L., Turk J. Interleukin-1 enhances pancreatic islet arachidonic acid 12-lipoxygenase product generation by increasing substrate availability through a nitric oxide-dependent mechanism. J Biol Chem. 1996 Jan 12;271(2):1029–1042. doi: 10.1074/jbc.271.2.1029. [DOI] [PubMed] [Google Scholar]
  24. Ma Z., Ramanadham S., Kempe K., Chi X. S., Ladenson J., Turk J. Pancreatic islets express a Ca2+-independent phospholipase A2 enzyme that contains a repeated structural motif homologous to the integral membrane protein binding domain of ankyrin. J Biol Chem. 1997 Apr 25;272(17):11118–11127. [PubMed] [Google Scholar]
  25. Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
  26. McConkey D. J., Orrenius S. The role of calcium in the regulation of apoptosis. J Leukoc Biol. 1996 Jun;59(6):775–783. [PubMed] [Google Scholar]
  27. McGowan A. J., Ruiz-Ruiz M. C., Gorman A. M., Lopez-Rivas A., Cotter T. G. Reactive oxygen intermediate(s) (ROI): common mediator(s) of poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis. FEBS Lett. 1996 Sep 2;392(3):299–303. doi: 10.1016/0014-5793(96)00838-1. [DOI] [PubMed] [Google Scholar]
  28. Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  30. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  31. Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
  32. Roe M. W., Lancaster M. E., Mertz R. J., Worley J. F., 3rd, Dukes I. D. Voltage-dependent intracellular calcium release from mouse islets stimulated by glucose. J Biol Chem. 1993 May 15;268(14):9953–9956. [PubMed] [Google Scholar]
  33. Roe M. W., Mertz R. J., Lancaster M. E., Worley J. F., 3rd, Dukes I. D. Thapsigargin inhibits the glucose-induced decrease of intracellular Ca2+ in mouse islets of Langerhans. Am J Physiol. 1994 Jun;266(6 Pt 1):E852–E862. doi: 10.1152/ajpendo.1994.266.6.E852. [DOI] [PubMed] [Google Scholar]
  34. Roe M. W., Philipson L. H., Frangakis C. J., Kuznetsov A., Mertz R. J., Lancaster M. E., Spencer B., Worley J. F., 3rd, Dukes I. D. Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem. 1994 Jul 15;269(28):18279–18282. [PubMed] [Google Scholar]
  35. Rothman S. M., Yamada K. A., Lancaster N. Nordihydroguaiaretic acid attenuates NMDA neurotoxicity--action beyond the receptor. Neuropharmacology. 1993 Nov;32(11):1279–1288. doi: 10.1016/0028-3908(93)90022-u. [DOI] [PubMed] [Google Scholar]
  36. Rzigalinski B. A., Blackmore P. F., Rosenthal M. D. Arachidonate mobilization is coupled to depletion of intracellular calcium stores and influx of extracellular calcium in differentiated U937 cells. Biochim Biophys Acta. 1996 Feb 16;1299(3):342–352. doi: 10.1016/0005-2760(95)00224-3. [DOI] [PubMed] [Google Scholar]
  37. Scaglia L., Smith F. E., Bonner-Weir S. Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology. 1995 Dec;136(12):5461–5468. doi: 10.1210/endo.136.12.7588296. [DOI] [PubMed] [Google Scholar]
  38. Silva A. M., Rosário L. M., Santos R. M. Background Ca2+ influx mediated by a dihydropyridine- and voltage-insensitive channel in pancreatic beta-cells. Modulation by Ni2+, diphenylamine-2-carboxylate, and glucose metabolism. J Biol Chem. 1994 Jun 24;269(25):17095–17103. [PubMed] [Google Scholar]
  39. Sánchez-Margalet V., Lucas M., Solano F., Goberna R. Sensitivity of insulin-secreting RIN m5F cells to undergoing apoptosis by the protein kinase C inhibitor staurosporine. Exp Cell Res. 1993 Nov;209(1):160–163. doi: 10.1006/excr.1993.1297. [DOI] [PubMed] [Google Scholar]
  40. Tang D. G., Chen Y. Q., Honn K. V. Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5241–5246. doi: 10.1073/pnas.93.11.5241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  43. Tokuyama Y., Sturis J., DePaoli A. M., Takeda J., Stoffel M., Tang J., Sun X., Polonsky K. S., Bell G. I. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995 Dec;44(12):1447–1457. doi: 10.2337/diab.44.12.1447. [DOI] [PubMed] [Google Scholar]
  44. Villalba M., Bockaert J., Journot L. Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci. 1997 Jan 1;17(1):83–90. doi: 10.1523/JNEUROSCI.17-01-00083.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Váradi A., Molnár E., Ostenson C. G., Ashcroft S. J. Isoforms of endoplasmic reticulum Ca(2+)-ATPase are differentially expressed in normal and diabetic islets of Langerhans. Biochem J. 1996 Oct 15;319(Pt 2):521–527. doi: 10.1042/bj3190521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wagenknecht B., Gulbins E., Lang F., Dichgans J., Weller M. Lipoxygenase inhibitors block CD95 ligand-mediated apoptosis of human malignant glioma cells. FEBS Lett. 1997 Jun 2;409(1):17–23. doi: 10.1016/s0014-5793(97)00468-7. [DOI] [PubMed] [Google Scholar]
  47. Wertz I. E., Hanley M. R. Diverse molecular provocation of programmed cell death. Trends Biochem Sci. 1996 Oct;21(10):359–364. [PubMed] [Google Scholar]
  48. Wolf M. J., Wang J., Turk J., Gross R. W. Depletion of intracellular calcium stores activates smooth muscle cell calcium-independent phospholipase A2. A novel mechanism underlying arachidonic acid mobilization. J Biol Chem. 1997 Jan 17;272(3):1522–1526. doi: 10.1074/jbc.272.3.1522. [DOI] [PubMed] [Google Scholar]
  49. Worley J. F., 3rd, McIntyre M. S., Spencer B., Dukes I. D. Depletion of intracellular Ca2+ stores activates a maitotoxin-sensitive nonselective cationic current in beta-cells. J Biol Chem. 1994 Dec 23;269(51):32055–32058. [PubMed] [Google Scholar]
  50. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES