Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1643–1653. doi: 10.1172/JCI635

Endogenous adenosine inhibits P-selectin-dependent formation of coronary thromboemboli during hypoperfusion in dogs.

T Minamino 1, M Kitakaze 1, H Asanuma 1, Y Tomiyama 1, M Shiraga 1, H Sato 1, Y Ueda 1, H Funaya 1, T Kuzuya 1, Y Matsuzawa 1, M Hori 1
PMCID: PMC508745  PMID: 9541494

Abstract

The activation of platelets and the formation of neutrophil- platelet conjugates may lead to the development of thromboemboli. We studied whether blockade of adenosine receptors during coronary hypoperfusion may cause thromboemboli via P-selectin-dependent mechanisms in 30 open-chest dogs. When coronary blood flow was reduced to 20% of the control, it was stable at low levels with increases in adenosine levels. When 8-p-sulfophenyltheophylline, an adenosine receptor antagonist, was infused during coronary hypoperfusion, coronary blood flow decreased gradually and approached almost zero 20 min after its administration. Histological examination revealed thromboemboli in the small coronary vessels. During hypoperfusion in the presence of 8-p-sulfophenyltheophylline, the mAb against P-selectin attenuated both the reduction in coronary blood flow and the formation of thromboemboli, and improved contractile and metabolic dysfunction of the myocardium. Flow cytometric analysis indicated that the expression of P-selectin on platelet and neutrophil-platelet adhesion were increased during coronary hypoperfusion, and that both were further augmented by 8-p-sulfophenyltheophylline. Immunohistochemical examination showed no staining of P-selectin in the ischemic myocardium. Adenosine inhibited the thrombin-induced expression of P-selectin on platelet and neutrophil- platelet adhesion via adenosine A2 receptors. Adenosine appears to inhibit the formation of thromboemboli during coronary hypoperfusion by suppressing the expression of P-selectin on platelets and neutrophil-platelet adhesion.

Full Text

The Full Text of this article is available as a PDF (617.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams J. Role of endothelial dysfunction in coronary artery disease. Am J Cardiol. 1997 Jun 26;79(12B):2–9. doi: 10.1016/s0002-9149(97)00379-2. [DOI] [PubMed] [Google Scholar]
  2. Bagge U., Amundson B., Lauritzen C. White blood cell deformability and plugging of skeletal muscle capillaries in hemorrhagic shock. Acta Physiol Scand. 1980 Feb;108(2):159–163. doi: 10.1111/j.1748-1716.1980.tb06513.x. [DOI] [PubMed] [Google Scholar]
  3. Bullough D. A., Magill M. J., Firestein G. S., Mullane K. M. Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J Immunol. 1995 Sep 1;155(5):2579–2586. [PubMed] [Google Scholar]
  4. Cobbold S., Metcalfe S. Monoclonal antibodies that define canine homologues of human CD antigens: summary of the First International Canine Leukocyte Antigen Workshop (CLAW). Tissue Antigens. 1994 Mar;43(3):137–154. doi: 10.1111/j.1399-0039.1994.tb02315.x. [DOI] [PubMed] [Google Scholar]
  5. Cronstein B. N., Daguma L., Nichols D., Hutchison A. J., Williams M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest. 1990 Apr;85(4):1150–1157. doi: 10.1172/JCI114547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cronstein B. N., Levin R. I., Philips M., Hirschhorn R., Abramson S. B., Weissmann G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J Immunol. 1992 Apr 1;148(7):2201–2206. [PubMed] [Google Scholar]
  7. Doré M., Simon S. I., Hughes B. J., Entman M. L., Smith C. W. P-selectin- and CD18-mediated recruitment of canine neutrophils under conditions of shear stress. Vet Pathol. 1995 May;32(3):258–268. doi: 10.1177/030098589503200307. [DOI] [PubMed] [Google Scholar]
  8. Duncker D. J., van Zon N. S., Ishibashi Y., Bache R. J. Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Invest. 1996 Feb 15;97(4):996–1009. doi: 10.1172/JCI118524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engler R. L., Schmid-Schönbein G. W., Pavelec R. S. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983 Apr;111(1):98–111. [PMC free article] [PubMed] [Google Scholar]
  10. Entman M. L., Ballantyne C. M. Association of neutrophils with platelet aggregates in unstable angina. Should we alter therapy? Circulation. 1996 Sep 15;94(6):1206–1208. doi: 10.1161/01.cir.94.6.1206. [DOI] [PubMed] [Google Scholar]
  11. Feoktistov I., Biaggioni I. Characterization of adenosine receptors in human erythroleukemia cells and platelets: further evidence for heterogeneity of adenosine A2 receptor subtypes. Mol Pharmacol. 1993 Jun;43(6):909–914. [PubMed] [Google Scholar]
  12. Gawaz M. P., Mujais S. K., Schmidt B., Gurland H. J. Platelet-leukocyte aggregation during hemodialysis. Kidney Int. 1994 Aug;46(2):489–495. doi: 10.1038/ki.1994.299. [DOI] [PubMed] [Google Scholar]
  13. Hamburger S. A., McEver R. P. GMP-140 mediates adhesion of stimulated platelets to neutrophils. Blood. 1990 Feb 1;75(3):550–554. [PubMed] [Google Scholar]
  14. Hawkins H. K., Entman M. L., Zhu J. Y., Youker K. A., Berens K., Doré M., Smith C. W. Acute inflammatory reaction after myocardial ischemic injury and reperfusion. Development and use of a neutrophil-specific antibody. Am J Pathol. 1996 Jun;148(6):1957–1969. [PMC free article] [PubMed] [Google Scholar]
  15. Hori M., Kitakaze M. Adenosine, the heart, and coronary circulation. Hypertension. 1991 Nov;18(5):565–574. doi: 10.1161/01.hyp.18.5.565. [DOI] [PubMed] [Google Scholar]
  16. Ikeda H., Takajo Y., Ichiki K., Ueno T., Maki S., Noda T., Sugi K., Imaizumi T. Increased soluble form of P-selectin in patients with unstable angina. Circulation. 1995 Oct 1;92(7):1693–1696. doi: 10.1161/01.cir.92.7.1693. [DOI] [PubMed] [Google Scholar]
  17. Jerome S. N., Doré M., Paulson J. C., Smith C. W., Korthuis R. J. P-selectin and ICAM-1-dependent adherence reactions: role in the genesis of postischemic no-reflow. Am J Physiol. 1994 Apr;266(4 Pt 2):H1316–H1321. doi: 10.1152/ajpheart.1994.266.4.H1316. [DOI] [PubMed] [Google Scholar]
  18. Kishimoto T. K., Rothlein R. Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites. Adv Pharmacol. 1994;25:117–169. doi: 10.1016/s1054-3589(08)60431-7. [DOI] [PubMed] [Google Scholar]
  19. Kitakaze M., Hori M., Sato H., Takashima S., Inoue M., Kitabatake A., Kamada T. Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res. 1991 Nov;69(5):1402–1408. doi: 10.1161/01.res.69.5.1402. [DOI] [PubMed] [Google Scholar]
  20. Kurose I., Anderson D. C., Miyasaka M., Tamatani T., Paulson J. C., Todd R. F., Rusche J. R., Granger D. N. Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res. 1994 Feb;74(2):336–343. doi: 10.1161/01.res.74.2.336. [DOI] [PubMed] [Google Scholar]
  21. Langford E. J., Wainwright R. J., Martin J. F. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler Thromb Vasc Biol. 1996 Jan;16(1):51–55. doi: 10.1161/01.atv.16.1.51. [DOI] [PubMed] [Google Scholar]
  22. Lefer A. M., Weyrich A. S., Buerke M. Role of selectins, a new family of adhesion molecules, in ischaemia-reperfusion injury. Cardiovasc Res. 1994 Mar;28(3):289–294. doi: 10.1093/cvr/28.3.289. [DOI] [PubMed] [Google Scholar]
  23. Lefer D. J., Flynn D. M., Buda A. J. Effects of a monoclonal antibody directed against P-selectin after myocardial ischemia and reperfusion. Am J Physiol. 1996 Jan;270(1 Pt 2):H88–H98. doi: 10.1152/ajpheart.1996.270.1.H88. [DOI] [PubMed] [Google Scholar]
  24. Ley K., Tedder T. F. Leukocyte interactions with vascular endothelium. New insights into selectin-mediated attachment and rolling. J Immunol. 1995 Jul 15;155(2):525–528. [PubMed] [Google Scholar]
  25. Lucchesi B. R. Modulation of leukocyte-mediated myocardial reperfusion injury. Annu Rev Physiol. 1990;52:561–576. doi: 10.1146/annurev.ph.52.030190.003021. [DOI] [PubMed] [Google Scholar]
  26. Minamino T., Kitakaze M., Morioka T., Node K., Shinozaki Y., Chujo M., Mori H., Takeda H., Inoue M., Hori M. Bidirectional effects of aminophylline on myocardial ischemia. Circulation. 1995 Sep 1;92(5):1254–1260. doi: 10.1161/01.cir.92.5.1254. [DOI] [PubMed] [Google Scholar]
  27. Minamino T., Kitakaze M., Node K., Funaya H., Inoue M., Hori M., Kamada T. Adenosine inhibits leukocyte-induced vasoconstriction. Am J Physiol. 1996 Dec;271(6 Pt 2):H2622–H2628. doi: 10.1152/ajpheart.1996.271.6.H2622. [DOI] [PubMed] [Google Scholar]
  28. Nagata K., Tsuji T., Todoroki N., Katagiri Y., Tanoue K., Yamazaki H., Hanai N., Irimura T. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J Immunol. 1993 Sep 15;151(6):3267–3273. [PubMed] [Google Scholar]
  29. Ott I., Neumann F. J., Gawaz M., Schmitt M., Schömig A. Increased neutrophil-platelet adhesion in patients with unstable angina. Circulation. 1996 Sep 15;94(6):1239–1246. doi: 10.1161/01.cir.94.6.1239. [DOI] [PubMed] [Google Scholar]
  30. Packham M. A., Ardlie N. G., Mustard J. F. Effect of adenine compounds on platelet aggregation. Am J Physiol. 1969 Oct;217(4):1009–1017. doi: 10.1152/ajplegacy.1969.217.4.1009. [DOI] [PubMed] [Google Scholar]
  31. Palabrica T., Lobb R., Furie B. C., Aronovitz M., Benjamin C., Hsu Y. M., Sajer S. A., Furie B. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature. 1992 Oct 29;359(6398):848–851. doi: 10.1038/359848a0. [DOI] [PubMed] [Google Scholar]
  32. Pitarys C. J., 2nd, Virmani R., Vildibill H. D., Jr, Jackson E. K., Forman M. B. Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation. 1991 Jan;83(1):237–247. doi: 10.1161/01.cir.83.1.237. [DOI] [PubMed] [Google Scholar]
  33. Rinder C. S., Bonan J. L., Rinder H. M., Mathew J., Hines R., Smith B. R. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood. 1992 Mar 1;79(5):1201–1205. [PubMed] [Google Scholar]
  34. Rinder H. M., Bonan J. L., Rinder C. S., Ault K. A., Smith B. R. Dynamics of leukocyte-platelet adhesion in whole blood. Blood. 1991 Oct 1;78(7):1730–1737. [PubMed] [Google Scholar]
  35. Sheridan F. M., Cole P. G., Ramage D. Leukocyte adhesion to the coronary microvasculature during ischemia and reperfusion in an in vivo canine model. Circulation. 1996 May 15;93(10):1784–1787. doi: 10.1161/01.cir.93.10.1784. [DOI] [PubMed] [Google Scholar]
  36. Tomanek R. J., Palmer P. J., Peiffer G. L., Schreiber K. L., Eastham C. L., Marcus M. L. Morphometry of canine coronary arteries, arterioles, and capillaries during hypertension and left ventricular hypertrophy. Circ Res. 1986 Jan;58(1):38–46. doi: 10.1161/01.res.58.1.38. [DOI] [PubMed] [Google Scholar]
  37. Varani K., Gessi S., Dalpiaz A., Borea P. A. Pharmacological and biochemical characterization of purified A2a adenosine receptors in human platelet membranes by [3H]-CGS 21680 binding. Br J Pharmacol. 1996 Apr;117(8):1693–1701. doi: 10.1111/j.1476-5381.1996.tb15341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ware J. A., Heistad D. D. Seminars in medicine of the Beth Israel Hospital, Boston. Platelet-endothelium interactions. N Engl J Med. 1993 Mar 4;328(9):628–635. doi: 10.1056/NEJM199303043280907. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES