Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1654–1660. doi: 10.1172/JCI555

Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies.

J Vissing 1, S F Vissing 1, D A MacLean 1, B Saltin 1, B Quistorff 1, R G Haller 1
PMCID: PMC508746  PMID: 9541495

Abstract

Muscle acidosis has been implicated as a major determinant of reflex sympathetic activation during exercise. To test this hypothesis we studied sympathetic exercise responses in metabolic myopathies in which muscle acidosis is impaired or augmented during exercise. As an index of reflex sympathetic activation to muscle, microneurographic measurements of muscle sympathetic nerve activity (MSNA) were obtained from the peroneal nerve. MSNA was measured during static handgrip exercise at 30% of maximal voluntary contraction force to exhaustion in patients in whom exercise-induced muscle acidosis is absent (seven myophosphorylase deficient patients; MD [McArdle's disease], and one patient with muscle phosphofructokinase deficiency [PFKD]), augmented (one patient with mitochondrial myopathy [MM]), or normal (five healthy controls). Muscle pH was monitored by 31P-magnetic resonance spectroscopy during handgrip exercise in the five control subjects, four MD patients, and the MM and PFKD patients. With handgrip to exhaustion, the increase in MSNA over baseline (bursts per minute [bpm] and total activity [%]) was not impaired in patients with MD (17+/-2 bpm, 124+/-42%) or PFKD (65 bpm, 307%), and was not enhanced in the MM patient (24 bpm, 131%) compared with controls (17+/-4 bpm, 115+/-17%). Post-handgrip ischemia studied in one McArdle patient, caused sustained elevation of MSNA above basal suggesting a chemoreflex activation of MSNA. Handgrip exercise elicited an enhanced drop in muscle pH of 0.51 U in the MM patient compared with the decrease in controls of 0.13+/-0.02 U. In contrast, muscle pH increased with exercise in MD by 0.12+/-0.05 U and in PFKD by 0.01 U. In conclusion, patients with glycogenolytic, glycolytic, and oxidative phosphorylation defects show normal muscle sympathetic nerve responses to static exercise. These findings indicate that muscle acidosis is not a prerequisite for sympathetic activation in exercise.

Full Text

The Full Text of this article is available as a PDF (247.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold D. L., Matthews P. M., Radda G. K. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med. 1984 Sep;1(3):307–315. doi: 10.1002/mrm.1910010303. [DOI] [PubMed] [Google Scholar]
  2. Arnold D. L., Taylor D. J., Radda G. K. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol. 1985 Aug;18(2):189–196. doi: 10.1002/ana.410180205. [DOI] [PubMed] [Google Scholar]
  3. Eldridge F. L., Millhorn D. E., Kiley J. P., Waldrop T. G. Stimulation by central command of locomotion, respiration and circulation during exercise. Respir Physiol. 1985 Mar;59(3):313–337. doi: 10.1016/0034-5687(85)90136-7. [DOI] [PubMed] [Google Scholar]
  4. Ettinger S., Gray K., Whisler S., Sinoway L. Dichloroacetate reduces sympathetic nerve responses to static exercise. Am J Physiol. 1991 Nov;261(5 Pt 2):H1653–H1658. doi: 10.1152/ajpheart.1991.261.5.H1653. [DOI] [PubMed] [Google Scholar]
  5. Fagius J., Karhuvaara S., Sundlöf G. The cold pressor test: effects on sympathetic nerve activity in human muscle and skin nerve fascicles. Acta Physiol Scand. 1989 Nov;137(3):325–334. doi: 10.1111/j.1748-1716.1989.tb08760.x. [DOI] [PubMed] [Google Scholar]
  6. Lewis S. F., Haller R. G. The pathophysiology of McArdle's disease: clues to regulation in exercise and fatigue. J Appl Physiol (1985) 1986 Aug;61(2):391–401. doi: 10.1152/jappl.1986.61.2.391. [DOI] [PubMed] [Google Scholar]
  7. Mitchell J. H. J.B. Wolffe memorial lecture. Neural control of the circulation during exercise. Med Sci Sports Exerc. 1990 Apr;22(2):141–154. [PubMed] [Google Scholar]
  8. Mizuno M., Horn A., Secher N. H., Quistorff B. Exercise-induced 31P-NMR metabolic response of human wrist flexor muscles during partial neuromuscular blockade. Am J Physiol. 1994 Aug;267(2 Pt 2):R408–R414. doi: 10.1152/ajpregu.1994.267.2.R408. [DOI] [PubMed] [Google Scholar]
  9. Pryor S. L., Lewis S. F., Haller R. G., Bertocci L. A., Victor R. G. Impairment of sympathetic activation during static exercise in patients with muscle phosphorylase deficiency (McArdle's disease). J Clin Invest. 1990 May;85(5):1444–1449. doi: 10.1172/JCI114589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rotto D. M., Kaufman M. P. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. J Appl Physiol (1985) 1988 Jun;64(6):2306–2313. doi: 10.1152/jappl.1988.64.6.2306. [DOI] [PubMed] [Google Scholar]
  11. Rotto D. M., Stebbins C. L., Kaufman M. P. Reflex cardiovascular and ventilatory responses to increasing H+ activity in cat hindlimb muscle. J Appl Physiol (1985) 1989 Jul;67(1):256–263. doi: 10.1152/jappl.1989.67.1.256. [DOI] [PubMed] [Google Scholar]
  12. Sinoway L. I., Rea R. F., Mosher T. J., Smith M. B., Mark A. L. Hydrogen ion concentration is not the sole determinant of muscle metaboreceptor responses in humans. J Clin Invest. 1992 Jun;89(6):1875–1884. doi: 10.1172/JCI115792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sinoway L. I., Smith M. B., Enders B., Leuenberger U., Dzwonczyk T., Gray K., Whisler S., Moore R. L. Role of diprotonated phosphate in evoking muscle reflex responses in cats and humans. Am J Physiol. 1994 Aug;267(2 Pt 2):H770–H778. doi: 10.1152/ajpheart.1994.267.2.H770. [DOI] [PubMed] [Google Scholar]
  14. Sinoway L. I., Wroblewski K. J., Prophet S. A., Ettinger S. M., Gray K. S., Whisler S. K., Miller G., Moore R. L. Glycogen depletion-induced lactate reductions attenuate reflex responses in exercising humans. Am J Physiol. 1992 Nov;263(5 Pt 2):H1499–H1505. doi: 10.1152/ajpheart.1992.263.5.H1499. [DOI] [PubMed] [Google Scholar]
  15. Sinoway L., Prophet S., Gorman I., Mosher T., Shenberger J., Dolecki M., Briggs R., Zelis R. Muscle acidosis during static exercise is associated with calf vasoconstriction. J Appl Physiol (1985) 1989 Jan;66(1):429–436. doi: 10.1152/jappl.1989.66.1.429. [DOI] [PubMed] [Google Scholar]
  16. Stebbins C. L., Longhurst J. C. Potentiation of the exercise pressor reflex by muscle ischemia. J Appl Physiol (1985) 1989 Mar;66(3):1046–1053. doi: 10.1152/jappl.1989.66.3.1046. [DOI] [PubMed] [Google Scholar]
  17. Taylor D. J., Bore P. J., Styles P., Gadian D. G., Radda G. K. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med. 1983 Jul;1(1):77–94. [PubMed] [Google Scholar]
  18. Thimm F., Baum K. Response of chemosensitive nerve fibers of group III and IV to metabolic changes in rat muscles. Pflugers Arch. 1987 Sep;410(1-2):143–152. doi: 10.1007/BF00581907. [DOI] [PubMed] [Google Scholar]
  19. Thimm F., Carvalho M., Babka M., Meier zu Verl E. Reflex increases in heart-rate induced by perfusing the hind leg of the rat with solutions containing lactic acid. Pflugers Arch. 1984 Mar;400(3):286–293. doi: 10.1007/BF00581561. [DOI] [PubMed] [Google Scholar]
  20. Vallbo A. B., Hagbarth K. E., Torebjörk H. E., Wallin B. G. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979 Oct;59(4):919–957. doi: 10.1152/physrev.1979.59.4.919. [DOI] [PubMed] [Google Scholar]
  21. Victor R. G., Bertocci L. A., Pryor S. L., Nunnally R. L. Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J Clin Invest. 1988 Oct;82(4):1301–1305. doi: 10.1172/JCI113730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Victor R. G., Leimbach W. N., Jr, Seals D. R., Wallin B. G., Mark A. L. Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension. 1987 May;9(5):429–436. doi: 10.1161/01.hyp.9.5.429. [DOI] [PubMed] [Google Scholar]
  23. Vissing J., Galbo H., Haller R. G. Exercise fuel mobilization in mitochondrial myopathy: a metabolic dilemma. Ann Neurol. 1996 Oct;40(4):655–662. doi: 10.1002/ana.410400416. [DOI] [PubMed] [Google Scholar]
  24. Vissing J., Galbo H., Haller R. G. Paradoxically enhanced glucose production during exercise in humans with blocked glycolysis caused by muscle phosphofructokinase deficiency. Neurology. 1996 Sep;47(3):766–771. doi: 10.1212/wnl.47.3.766. [DOI] [PubMed] [Google Scholar]
  25. Vissing J., Lewis S. F., Galbo H., Haller R. G. Effect of deficient muscular glycogenolysis on extramuscular fuel production in exercise. J Appl Physiol (1985) 1992 May;72(5):1773–1779. doi: 10.1152/jappl.1992.72.5.1773. [DOI] [PubMed] [Google Scholar]
  26. Vissing J., Wilson L. B., Mitchell J. H., Victor R. G. Static muscle contraction reflexly increases adrenal sympathetic nerve activity in rats. Am J Physiol. 1991 Nov;261(5 Pt 2):R1307–R1312. doi: 10.1152/ajpregu.1991.261.5.R1307. [DOI] [PubMed] [Google Scholar]
  27. Vissing S. F. Differential activation of sympathetic discharge to skin and skeletal muscle in humans. Acta Physiol Scand Suppl. 1997;639:1–32. [PubMed] [Google Scholar]
  28. Vissing S. F., Hjortsø E. M. Central motor command activates sympathetic outflow to the cutaneous circulation in humans. J Physiol. 1996 May 1;492(Pt 3):931–939. doi: 10.1113/jphysiol.1996.sp021359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vissing S. F., Scherrer U., Victor R. G. Stimulation of skin sympathetic nerve discharge by central command. Differential control of sympathetic outflow to skin and skeletal muscle during static exercise. Circ Res. 1991 Jul;69(1):228–238. doi: 10.1161/01.res.69.1.228. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES