Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1775–1783. doi: 10.1172/JCI1940

Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy.

M Spindler 1, K W Saupe 1, M E Christe 1, H L Sweeney 1, C E Seidman 1, J G Seidman 1, J S Ingwall 1
PMCID: PMC508760  PMID: 9541509

Abstract

An arginine to glutamine missense mutation at position 403 of the beta-cardiac myosin heavy chain causes familial hypertrophic cardiomyopathy. Here we study mice which have this same missense mutation (alphaMHC403/+) using an isolated, isovolumic heart preparation where cardiac performance is measured simultaneously with cardiac energetics using 31P nuclear magnetic resonance spectroscopy. We observed three major alterations in the physiology and bioenergetics of the alphaMHC403/+ mouse hearts. First, while there was no evidence of systolic dysfunction, diastolic function was impaired during inotropic stimulation. Diastolic dysfunction was manifest as both a decreased rate of left ventricular relaxation and an increase in end-diastolic pressure. Second, under baseline conditions alphaMHC403/+ hearts had lower phosphocreatine and increased inorganic phosphate contents resulting in a decrease in the calculated value for the free energy released from ATP hydrolysis. Third, hearts from alphaMHC403/+ hearts that were studied unpaced responded to increased perfusate calcium by decreasing heart rate approximately twice as much as wild types. We conclude that hearts from alphaMHC403/+ mice demonstrate work load-dependent diastolic dysfunction resembling the human form of familial hypertrophic cardiomyopathy. Changes in high-energy phosphate content suggest that an energy-requiring process may contribute to the observed diastolic dysfunction.

Full Text

The Full Text of this article is available as a PDF (232.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berul C. I., Christe M. E., Aronovitz M. J., Seidman C. E., Seidman J. G., Mendelsohn M. E. Electrophysiological abnormalities and arrhythmias in alpha MHC mutant familial hypertrophic cardiomyopathy mice. J Clin Invest. 1997 Feb 15;99(4):570–576. doi: 10.1172/JCI119197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chu G., Luo W., Slack J. P., Tilgmann C., Sweet W. E., Spindler M., Saupe K. W., Boivin G. P., Moravec C. S., Matlib M. A. Compensatory mechanisms associated with the hyperdynamic function of phospholamban-deficient mouse hearts. Circ Res. 1996 Dec;79(6):1064–1076. doi: 10.1161/01.res.79.6.1064. [DOI] [PubMed] [Google Scholar]
  3. Fananapazir L., Epstein N. D. Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation. 1994 Jan;89(1):22–32. doi: 10.1161/01.cir.89.1.22. [DOI] [PubMed] [Google Scholar]
  4. Geisterfer-Lowrance A. A., Christe M., Conner D. A., Ingwall J. S., Schoen F. J., Seidman C. E., Seidman J. G. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996 May 3;272(5262):731–734. doi: 10.1126/science.272.5262.731. [DOI] [PubMed] [Google Scholar]
  5. Gibbs C. The cytoplasmic phosphorylation potential. Its possible role in the control of myocardial respiration and cardiac contractility. J Mol Cell Cardiol. 1985 Aug;17(8):727–731. doi: 10.1016/s0022-2828(85)80034-1. [DOI] [PubMed] [Google Scholar]
  6. Hasty P., Ramírez-Solis R., Krumlauf R., Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature. 1991 Mar 21;350(6315):243–246. doi: 10.1038/350243a0. [DOI] [PubMed] [Google Scholar]
  7. Kammermeier H. High energy phosphate of the myocardium: concentration versus free energy change. Basic Res Cardiol. 1987;82 (Suppl 2):31–36. doi: 10.1007/978-3-662-11289-2_3. [DOI] [PubMed] [Google Scholar]
  8. Kammermeier H. Microassay of free and total creatine from tissue extracts by combination of chromatographic and fluorometric methods. Anal Biochem. 1973 Dec;56(2):341–345. doi: 10.1016/0003-2697(73)90199-1. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lankford E. B., Epstein N. D., Fananapazir L., Sweeney H. L. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest. 1995 Mar;95(3):1409–1414. doi: 10.1172/JCI117795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
  12. Maron B. J., Roberts W. C., Epstein S. E. Sudden death in hypertrophic cardiomyopathy: a profile of 78 patients. Circulation. 1982 Jun;65(7):1388–1394. doi: 10.1161/01.cir.65.7.1388. [DOI] [PubMed] [Google Scholar]
  13. Maron B. J., Spirito P., Green K. J., Wesley Y. E., Bonow R. O., Arce J. Noninvasive assessment of left ventricular diastolic function by pulsed Doppler echocardiography in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1987 Oct;10(4):733–742. doi: 10.1016/s0735-1097(87)80264-4. [DOI] [PubMed] [Google Scholar]
  14. Rosalki S. B. An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med. 1967 Apr;69(4):696–705. [PubMed] [Google Scholar]
  15. Sweeney H. L., Straceski A. J., Leinwand L. A., Tikunov B. A., Faust L. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem. 1994 Jan 21;269(3):1603–1605. [PubMed] [Google Scholar]
  16. Tian R., Christe M. E., Spindler M., Hopkins J. C., Halow J. M., Camacho S. A., Ingwall J. S. Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J Clin Invest. 1997 Feb 15;99(4):745–751. doi: 10.1172/JCI119220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES