Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1784–1788. doi: 10.1172/JCI1594

Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1.

H Abe 1, N Yamada 1, K Kamata 1, T Kuwaki 1, M Shimada 1, J Osuga 1, F Shionoiri 1, N Yahagi 1, T Kadowaki 1, H Tamemoto 1, S Ishibashi 1, Y Yazaki 1, M Makuuchi 1
PMCID: PMC508761  PMID: 9541510

Abstract

Insulin resistance is often associated with atherosclerotic diseases in subjects with obesity and impaired glucose tolerance. This study examined the effects of insulin resistance on coronary risk factors in IRS-1 deficient mice, a nonobese animal model of insulin resistance. Blood pressure and plasma triglyceride levels were significantly higher in IRS-1 deficient mice than in normal mice. Impaired endothelium-dependent vascular relaxation was also observed in IRS-1 deficient mice. Furthermore, lipoprotein lipase activity was lower than in normal mice, suggesting impaired lipolysis to be involved in the increase in plasma triglyceride levels under insulin-resistant conditions. Thus, insulin resistance plays an important role in the clustering of coronary risk factors which may accelerate the progression of atherosclerosis in subjects with insulin resistance.

Full Text

The Full Text of this article is available as a PDF (153.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe H., Bandai A., Makuuchi M., Idezuki Y., Nozawa M., Oka T., Osuga J., Watanabe Y., Inaba T., Yamada N. Hyperinsulinaemia accelerates accumulation of cholesterol ester in aorta of rats with transplanted pancreas. Diabetologia. 1996 Nov;39(11):1276–1283. doi: 10.1007/s001250050570. [DOI] [PubMed] [Google Scholar]
  2. Araki E., Lipes M. A., Patti M. E., Brüning J. C., Haag B., 3rd, Johnson R. S., Kahn C. R. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994 Nov 10;372(6502):186–190. doi: 10.1038/372186a0. [DOI] [PubMed] [Google Scholar]
  3. Bonora E., Zavaroni I., Alpi O., Pezzarossa A., Bruschi F., Dall'Aglio E., Guerra L., Coscelli C., Butturini U. Relationship between blood pressure and plasma insulin in non-obese and obese non-diabetic subjects. Diabetologia. 1987 Sep;30(9):719–723. doi: 10.1007/BF00296995. [DOI] [PubMed] [Google Scholar]
  4. Coppack S. W., Evans R. D., Fisher R. M., Frayn K. N., Gibbons G. F., Humphreys S. M., Kirk M. L., Potts J. L., Hockaday T. D. Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism. 1992 Mar;41(3):264–272. doi: 10.1016/0026-0495(92)90269-g. [DOI] [PubMed] [Google Scholar]
  5. DeFronzo R. A. The effect of insulin on renal sodium metabolism. A review with clinical implications. Diabetologia. 1981 Sep;21(3):165–171. doi: 10.1007/BF00252649. [DOI] [PubMed] [Google Scholar]
  6. Eckel R. H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989 Apr 20;320(16):1060–1068. doi: 10.1056/NEJM198904203201607. [DOI] [PubMed] [Google Scholar]
  7. Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M. A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L., Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med. 1987 Aug 6;317(6):350–357. doi: 10.1056/NEJM198708063170605. [DOI] [PubMed] [Google Scholar]
  8. Howard B. V. Lipoprotein metabolism in diabetes mellitus. J Lipid Res. 1987 Jun;28(6):613–628. [PubMed] [Google Scholar]
  9. Huang P. L., Huang Z., Mashimo H., Bloch K. D., Moskowitz M. A., Bevan J. A., Fishman M. C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995 Sep 21;377(6546):239–242. doi: 10.1038/377239a0. [DOI] [PubMed] [Google Scholar]
  10. Kadowaki T., Koyasu S., Nishida E., Tobe K., Izumi T., Takaku F., Sakai H., Yahara I., Kasuga M. Tyrosine phosphorylation of common and specific sets of cellular proteins rapidly induced by insulin, insulin-like growth factor I, and epidermal growth factor in an intact cell. J Biol Chem. 1987 May 25;262(15):7342–7350. [PubMed] [Google Scholar]
  11. Kamata K., Miyata N., Kasuya Y. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol. 1989 Jun;97(2):614–618. doi: 10.1111/j.1476-5381.1989.tb11993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kamata K., Sugiura M., Kojima S., Kasuya Y. Preservation of endothelium-dependent relaxation in cholesterol-fed and streptozotocin-induced diabetic mice by the chronic administration of cholestyramine. Br J Pharmacol. 1996 May;118(2):385–391. doi: 10.1111/j.1476-5381.1996.tb15414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaplan N. M. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989 Jul;149(7):1514–1520. doi: 10.1001/archinte.149.7.1514. [DOI] [PubMed] [Google Scholar]
  14. Kurihara Y., Kurihara H., Suzuki H., Kodama T., Maemura K., Nagai R., Oda H., Kuwaki T., Cao W. H., Kamada N. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature. 1994 Apr 21;368(6473):703–710. doi: 10.1038/368703a0. [DOI] [PubMed] [Google Scholar]
  15. Lafontan M., Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res. 1993 Jul;34(7):1057–1091. [PubMed] [Google Scholar]
  16. Lillioja S., Young A. A., Culter C. L., Ivy J. L., Abbott W. G., Zawadzki J. K., Yki-Järvinen H., Christin L., Secomb T. W., Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987 Aug;80(2):415–424. doi: 10.1172/JCI113088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lucas C. P., Estigarribia J. A., Darga L. L., Reaven G. M. Insulin and blood pressure in obesity. Hypertension. 1985 Sep-Oct;7(5):702–706. doi: 10.1161/01.hyp.7.5.702. [DOI] [PubMed] [Google Scholar]
  18. Meraji S., Jayakody L., Senaratne M. P., Thomson A. B., Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987 Aug;36(8):978–981. doi: 10.2337/diab.36.8.978. [DOI] [PubMed] [Google Scholar]
  19. Miyata N., Tsuchida K., Okuyama S., Otomo S., Kamata K., Kasuya Y. Age-related changes in endothelium-dependent relaxation in aorta from genetically diabetic WBN/Kob rats. Am J Physiol. 1992 Apr;262(4 Pt 2):H1104–H1109. doi: 10.1152/ajpheart.1992.262.4.H1104. [DOI] [PubMed] [Google Scholar]
  20. Modan M., Halkin H., Almog S., Lusky A., Eshkol A., Shefi M., Shitrit A., Fuchs Z. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest. 1985 Mar;75(3):809–817. doi: 10.1172/JCI111776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  22. Moore R. D. Effects of insulin upon ion transport. Biochim Biophys Acta. 1983 Mar 21;737(1):1–49. doi: 10.1016/0304-4157(83)90013-8. [DOI] [PubMed] [Google Scholar]
  23. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  24. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  25. Pelkonen R., Miettinen T. A., Taskinen M. R., Nikkilä E. A. Effect of acute elevation of plasma glycerol, triglyceride and FFA levels on glucose utilization and plasma insulin. Diabetes. 1968 Feb;17(2):76–82. doi: 10.2337/diab.17.2.76. [DOI] [PubMed] [Google Scholar]
  26. Reaven E. P., Reaven G. M. Mechanisms for development of diabetic hypertriglyceridemia in streptozotocin-treated rats. Effect of diet and duration of insulin deficiency. J Clin Invest. 1974 Nov;54(5):1167–1178. doi: 10.1172/JCI107860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reaven G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595–1607. doi: 10.2337/diab.37.12.1595. [DOI] [PubMed] [Google Scholar]
  28. Rowe J. W., Young J. B., Minaker K. L., Stevens A. L., Pallotta J., Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981 Mar;30(3):219–225. doi: 10.2337/diab.30.3.219. [DOI] [PubMed] [Google Scholar]
  29. Ruderman N. B., Toews C. J., Shafrir E. Role of free fatty acids in glucose homeostasis. Arch Intern Med. 1969 Mar;123(3):299–313. [PubMed] [Google Scholar]
  30. Shimada M., Ishibashi S., Gotoda T., Kawamura M., Yamamoto K., Inaba T., Harada K., Ohsuga J., Perrey S., Yazaki Y. Overexpression of human lipoprotein lipase protects diabetic transgenic mice from diabetic hypertriglyceridemia and hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1688–1694. doi: 10.1161/01.atv.15.10.1688. [DOI] [PubMed] [Google Scholar]
  31. Shimada M., Shimano H., Gotoda T., Yamamoto K., Kawamura M., Inaba T., Yazaki Y., Yamada N. Overexpression of human lipoprotein lipase in transgenic mice. Resistance to diet-induced hypertriglyceridemia and hypercholesterolemia. J Biol Chem. 1993 Aug 25;268(24):17924–17929. [PubMed] [Google Scholar]
  32. Shimano H., Yamada N., Katsuki M., Shimada M., Gotoda T., Harada K., Murase T., Fukazawa C., Takaku F., Yazaki Y. Overexpression of apolipoprotein E in transgenic mice: marked reduction in plasma lipoproteins except high density lipoprotein and resistance against diet-induced hypercholesterolemia. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1750–1754. doi: 10.1073/pnas.89.5.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steinberg H. O., Brechtel G., Johnson A., Fineberg N., Baron A. D. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994 Sep;94(3):1172–1179. doi: 10.1172/JCI117433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sun X. J., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., White M. F. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991 Jul 4;352(6330):73–77. doi: 10.1038/352073a0. [DOI] [PubMed] [Google Scholar]
  35. Tamemoto H., Kadowaki T., Tobe K., Yagi T., Sakura H., Hayakawa T., Terauchi Y., Ueki K., Kaburagi Y., Satoh S. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994 Nov 10;372(6502):182–186. doi: 10.1038/372182a0. [DOI] [PubMed] [Google Scholar]
  36. Williams B. Insulin resistance: the shape of things to come. Lancet. 1994 Aug 20;344(8921):521–524. doi: 10.1016/s0140-6736(94)91904-6. [DOI] [PubMed] [Google Scholar]
  37. Yamakoshi K. I., Shimazu H., Togawa T. Indirect measurement of instantaneous arterial blood pressure in the rat. Am J Physiol. 1979 Nov;237(5):H632–H637. doi: 10.1152/ajpheart.1979.237.5.H632. [DOI] [PubMed] [Google Scholar]
  38. Yamauchi T., Tobe K., Tamemoto H., Ueki K., Kaburagi Y., Yamamoto-Honda R., Takahashi Y., Yoshizawa F., Aizawa S., Akanuma Y. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol. 1996 Jun;16(6):3074–3084. doi: 10.1128/mcb.16.6.3074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zavaroni I., Bonora E., Pagliara M., Dall'Aglio E., Luchetti L., Buonanno G., Bonati P. A., Bergonzani M., Gnudi L., Passeri M. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med. 1989 Mar 16;320(11):702–706. doi: 10.1056/NEJM198903163201105. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES