Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Apr 15;101(8):1789–1796. doi: 10.1172/JCI119888

In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors.

A Kojima 1, N R Hackett 1, A Ohwada 1, R G Crystal 1
PMCID: PMC508762  PMID: 9541511

Abstract

To evaluate the concept that in vivo transfer of the human carboxylesterase gene will confer sensitivity of a solid tumor to the prodrug CPT-11 (irinotecan), we constructed an adenovirus vector (AdCMV.CE) carrying the human carboxylesterase gene driven by the cytomegalovirus (CMV) promoter, infected A549 human lung adenocarcinoma cells in vitro and in vivo, and evaluated cell growth over time. AdCMV.CE produced a functional carboxylesterase protein in A549 cells in vitro and in vivo as evidenced by ability of lysates from the infected cells to convert CPT-11 to its active metabolite SN-38. The AdCMV.CE vector effectively suppressed A549 cell growth in vitro in the presence of CPT-11. Cell mixing studies demonstrated that when as few as 10% of cells expressed the human carboxylesterase gene, there was bystander growth suppression in the presence of CPT-11. Consistent with these in vitro observations, when AdCMV.CE was directly injected into established subcutaneous A549 tumors in nude mice receiving CPT-11, there was 35% reduction in tumor size at day 27 compared to controls, and a 41% reduction at day 34 (P < 0.01, both comparisons to controls). Similar observations were made with the cell line H157 and HeLa. These observations suggest that local gene transfer of the human carboxylesterase gene and concomitant local administration of CPT-11 may have potential as a strategy for control of the growth of solid tumors.

Full Text

The Full Text of this article is available as a PDF (223.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armand J. P., Ducreux M., Mahjoubi M., Abigerges D., Bugat R., Chabot G., Herait P., de Forni M., Rougier P. CPT-11 (irinotecan) in the treatment of colorectal cancer. Eur J Cancer. 1995 Jul-Aug;31A(7-8):1283–1287. doi: 10.1016/0959-8049(95)00212-2. [DOI] [PubMed] [Google Scholar]
  2. Barilero I., Gandia D., Armand J. P., Mathieu-Boué A., Ré M., Gouyette A., Chabot G. G. Simultaneous determination of the camptothecin analogue CPT-11 and its active metabolite SN-38 by high-performance liquid chromatography: application to plasma pharmacokinetic studies in cancer patients. J Chromatogr. 1992 Mar 27;575(2):275–280. doi: 10.1016/0378-4347(92)80156-k. [DOI] [PubMed] [Google Scholar]
  3. Chen S. H., Shine H. D., Goodman J. C., Grossman R. G., Woo S. L. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3054–3057. doi: 10.1073/pnas.91.8.3054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Culver K. W., Ram Z., Wallbridge S., Ishii H., Oldfield E. H., Blaese R. M. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992 Jun 12;256(5063):1550–1552. doi: 10.1126/science.1317968. [DOI] [PubMed] [Google Scholar]
  5. Danks M. K., Morton C. L., Pawlik C. A., Potter P. M. Overexpression of a rabbit liver carboxylesterase sensitizes human tumor cells to CPT-11. Cancer Res. 1998 Jan 1;58(1):20–22. [PubMed] [Google Scholar]
  6. DiMaio J. M., Clary B. M., Via D. F., Coveney E., Pappas T. N., Lyerly H. K. Directed enzyme pro-drug gene therapy for pancreatic cancer in vivo. Surgery. 1994 Aug;116(2):205–213. [PubMed] [Google Scholar]
  7. Fukuoka M., Niitani H., Suzuki A., Motomiya M., Hasegawa K., Nishiwaki Y., Kuriyama T., Ariyoshi Y., Negoro S., Masuda N. A phase II study of CPT-11, a new derivative of camptothecin, for previously untreated non-small-cell lung cancer. J Clin Oncol. 1992 Jan;10(1):16–20. doi: 10.1200/JCO.1992.10.1.16. [DOI] [PubMed] [Google Scholar]
  8. Green N. K., Youngs D. J., Neoptolemos J. P., Friedlos F., Knox R. J., Springer C. J., Anlezark G. M., Michael N. P., Melton R. G., Ford M. J. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther. 1997 Jul-Aug;4(4):229–238. [PubMed] [Google Scholar]
  9. Gutierrez A. A., Lemoine N. R., Sikora K. Gene therapy for cancer. Lancet. 1992 Mar 21;339(8795):715–721. doi: 10.1016/0140-6736(92)90606-4. [DOI] [PubMed] [Google Scholar]
  10. Hersh J., Crystal R. G., Bewig B. Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector. Gene Ther. 1995 Mar;2(2):124–131. [PubMed] [Google Scholar]
  11. Hirschowitz E. A., Ohwada A., Pascal W. R., Russi T. J., Crystal R. G. In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther. 1995 Aug;6(8):1055–1063. doi: 10.1089/hum.1995.6.8-1055. [DOI] [PubMed] [Google Scholar]
  12. Huber B. E., Austin E. A., Richards C. A., Davis S. T., Good S. S. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8302–8306. doi: 10.1073/pnas.91.17.8302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaneda N., Nagata H., Furuta T., Yokokura T. Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res. 1990 Mar 15;50(6):1715–1720. [PubMed] [Google Scholar]
  14. Kaneko S., Hallenbeck P., Kotani T., Nakabayashi H., McGarrity G., Tamaoki T., Anderson W. F., Chiang Y. L. Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Res. 1995 Nov 15;55(22):5283–5287. [PubMed] [Google Scholar]
  15. Kawato Y., Aonuma M., Hirota Y., Kuga H., Sato K. Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 1991 Aug 15;51(16):4187–4191. [PubMed] [Google Scholar]
  16. Kojima A., Shinkai T., Saijo N. Cytogenetic effects of CPT-11 and its active metabolite, SN-38 on human lymphocytes. Jpn J Clin Oncol. 1993 Apr;23(2):116–122. [PubMed] [Google Scholar]
  17. Korst R. J., Bewig B., Crystal R. G. In vitro and in vivo transfer and expression of human surfactant SP-A- and SP-B-associated protein cDNAs mediated by replication-deficient, recombinant adenoviral vectors. Hum Gene Ther. 1995 Mar;6(3):277–287. doi: 10.1089/hum.1995.6.3-277. [DOI] [PubMed] [Google Scholar]
  18. Krisch K. Reaction of a microsomal esterase from hog-liver with diethyl rho-nitrophenyl phosphate. Biochim Biophys Acta. 1966 Aug 10;122(2):265–280. doi: 10.1016/0926-6593(66)90067-1. [DOI] [PubMed] [Google Scholar]
  19. Kroetz D. L., McBride O. W., Gonzalez F. J. Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochemistry. 1993 Nov 2;32(43):11606–11617. doi: 10.1021/bi00094a018. [DOI] [PubMed] [Google Scholar]
  20. Kunimoto T., Nitta K., Tanaka T., Uehara N., Baba H., Takeuchi M., Yokokura T., Sawada S., Miyasaka T., Mutai M. Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothec in, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 1987 Nov 15;47(22):5944–5947. [PubMed] [Google Scholar]
  21. Lavelle F., Bissery M. C., André S., Roquet F., Riou J. F. Preclinical evaluation of CPT-11 and its active metabolite SN-38. Semin Oncol. 1996 Feb;23(1 Suppl 3):11–20. [PubMed] [Google Scholar]
  22. Link C. J., Jr, Kolb E. M., Muldoon R. R. Preliminary in vitro efficacy and toxicities studies of the herpes simplex thymidine kinase gene system for the treatment of breast cancer. Hybridoma. 1995 Apr;14(2):143–147. doi: 10.1089/hyb.1995.14.143. [DOI] [PubMed] [Google Scholar]
  23. Manome Y., Wen P. Y., Dong Y., Tanaka T., Mitchell B. S., Kufe D. W., Fine H. A. Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo. Nat Med. 1996 May;2(5):567–573. doi: 10.1038/nm0596-567. [DOI] [PubMed] [Google Scholar]
  24. Marais R., Spooner R. A., Light Y., Martin J., Springer C. J. Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res. 1996 Oct 15;56(20):4735–4742. [PubMed] [Google Scholar]
  25. Masuda N., Fukuoka M., Kusunoki Y., Matsui K., Takifuji N., Kudoh S., Negoro S., Nishioka M., Nakagawa K., Takada M. CPT-11: a new derivative of camptothecin for the treatment of refractory or relapsed small-cell lung cancer. J Clin Oncol. 1992 Aug;10(8):1225–1229. doi: 10.1200/JCO.1992.10.8.1225. [DOI] [PubMed] [Google Scholar]
  26. McGrory W. J., Bautista D. S., Graham F. L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology. 1988 Apr;163(2):614–617. doi: 10.1016/0042-6822(88)90302-9. [DOI] [PubMed] [Google Scholar]
  27. Mertz L. M., Rashtchian A. Nucleotide imbalance and polymerase chain reaction: effects on DNA amplification and synthesis of high specific activity radiolabeled DNA probes. Anal Biochem. 1994 Aug 15;221(1):160–165. doi: 10.1006/abio.1994.1392. [DOI] [PubMed] [Google Scholar]
  28. Moolten F. L. Drug sensitivity ("suicide") genes for selective cancer chemotherapy. Cancer Gene Ther. 1994 Dec;1(4):279–287. [PubMed] [Google Scholar]
  29. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  30. Mullen C. A., Coale M. M., Lowe R., Blaese R. M. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res. 1994 Mar 15;54(6):1503–1506. [PubMed] [Google Scholar]
  31. Mullen C. A., Kilstrup M., Blaese R. M. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):33–37. doi: 10.1073/pnas.89.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Munger J. S., Shi G. P., Mark E. A., Chin D. T., Gerard C., Chapman H. A. A serine esterase released by human alveolar macrophages is closely related to liver microsomal carboxylesterases. J Biol Chem. 1991 Oct 5;266(28):18832–18838. [PubMed] [Google Scholar]
  33. Negoro S., Fukuoka M., Masuda N., Takada M., Kusunoki Y., Matsui K., Takifuji N., Kudoh S., Niitani H., Taguchi T. Phase I study of weekly intravenous infusions of CPT-11, a new derivative of camptothecin, in the treatment of advanced non-small-cell lung cancer. J Natl Cancer Inst. 1991 Aug 21;83(16):1164–1168. doi: 10.1093/jnci/83.16.1164. [DOI] [PubMed] [Google Scholar]
  34. Ohe Y., Sasaki Y., Shinkai T., Eguchi K., Tamura T., Kojima A., Kunikane H., Okamoto H., Karato A., Ohmatsu H. Phase I study and pharmacokinetics of CPT-11 with 5-day continuous infusion. J Natl Cancer Inst. 1992 Jun 17;84(12):972–974. doi: 10.1093/jnci/84.12.972. [DOI] [PubMed] [Google Scholar]
  35. Ohno R., Okada K., Masaoka T., Kuramoto A., Arima T., Yoshida Y., Ariyoshi H., Ichimaru M., Sakai Y., Oguro M. An early phase II study of CPT-11: a new derivative of camptothecin, for the treatment of leukemia and lymphoma. J Clin Oncol. 1990 Nov;8(11):1907–1912. doi: 10.1200/JCO.1990.8.11.1907. [DOI] [PubMed] [Google Scholar]
  36. Ohwada A., Hirschowitz E. A., Crystal R. G. Regional delivery of an adenovirus vector containing the Escherichia coli cytosine deaminase gene to provide local activation of 5-fluorocytosine to suppress the growth of colon carcinoma metastatic to liver. Hum Gene Ther. 1996 Aug 20;7(13):1567–1576. doi: 10.1089/hum.1996.7.13-1567. [DOI] [PubMed] [Google Scholar]
  37. Ohwada A., Rafii S., Moore M. A., Crystal R. G. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation-and chemotherapy-induced bone marrow suppression. Blood. 1996 Aug 1;88(3):778–784. [PubMed] [Google Scholar]
  38. Rosenfeld M. A., Yoshimura K., Trapnell B. C., Yoneyama K., Rosenthal E. R., Dalemans W., Fukayama M., Bargon J., Stier L. E., Stratford-Perricaudet L. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell. 1992 Jan 10;68(1):143–155. doi: 10.1016/0092-8674(92)90213-v. [DOI] [PubMed] [Google Scholar]
  39. Rothenberg M. L., Eckardt J. R., Kuhn J. G., Burris H. A., 3rd, Nelson J., Hilsenbeck S. G., Rodriguez G. I., Thurman A. M., Smith L. S., Eckhardt S. G. Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol. 1996 Apr;14(4):1128–1135. doi: 10.1200/JCO.1996.14.4.1128. [DOI] [PubMed] [Google Scholar]
  40. Shibata F., Takagi Y., Kitajima M., Kuroda T., Omura T. Molecular cloning and characterization of a human carboxylesterase gene. Genomics. 1993 Jul;17(1):76–82. doi: 10.1006/geno.1993.1285. [DOI] [PubMed] [Google Scholar]
  41. Shimada Y., Yoshino M., Wakui A., Nakao I., Futatsuki K., Sakata Y., Kambe M., Taguchi T., Ogawa N. Phase II study of CPT-11, a new camptothecin derivative, in metastatic colorectal cancer. CPT-11 Gastrointestinal Cancer Study Group. J Clin Oncol. 1993 May;11(5):909–913. doi: 10.1200/JCO.1993.11.5.909. [DOI] [PubMed] [Google Scholar]
  42. Smythe W. R., Hwang H. C., Amin K. M., Eck S. L., Davidson B. L., Wilson J. M., Kaiser L. R., Albelda S. M. Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res. 1994 Apr 15;54(8):2055–2059. [PubMed] [Google Scholar]
  43. Takeuchi S., Takamizawa H., Takeda Y., Ohkawa T., Tamaya T., Noda K., Sugawa T., Sekiba K., Yakushiji M., Taguchi T. [An early phase II study of CPT-11 in gynecologic cancers. Research Group of CPT-11 in Gynecologic Cancers]. Gan To Kagaku Ryoho. 1991 Apr;18(4):579–584. [PubMed] [Google Scholar]
  44. Tanaka T., Kanai F., Okabe S., Yoshida Y., Wakimoto H., Hamada H., Shiratori Y., Lan K., Ishitobi M., Omata M. Adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing human gastric carcinoma cells in vitro. Cancer Res. 1996 Mar 15;56(6):1341–1345. [PubMed] [Google Scholar]
  45. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tsuruo T., Matsuzaki T., Matsushita M., Saito H., Yokokura T. Antitumor effect of CPT-11, a new derivative of camptothecin, against pleiotropic drug-resistant tumors in vitro and in vivo. Cancer Chemother Pharmacol. 1988;21(1):71–74. doi: 10.1007/BF00262744. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES