Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 1;101(9):1881–1888. doi: 10.1172/JCI2127

Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice.

F Norflus 1, C J Tifft 1, M P McDonald 1, G Goldstein 1, J N Crawley 1, A Hoffmann 1, K Sandhoff 1, K Suzuki 1, R L Proia 1
PMCID: PMC508774  PMID: 9576752

Abstract

The GM2 gangliosidoses are a group of severe, neurodegenerative conditions that include Tay-Sachs disease, Sandhoff disease, and the GM2 activator deficiency. Bone marrow transplantation (BMT) was examined as a potential treatment for these disorders using a Sandhoff disease mouse model. BMT extended the life span of these mice from approximately 4.5 mo to up to 8 mo and slowed their neurologic deterioration. BMT also corrected biochemical deficiencies in somatic tissues as indicated by decreased excretion of urinary oligosaccharides, and lower glycolipid storage and increased levels of beta-hexosaminidase activity in visceral organs. Even with neurologic improvement, neither clear reduction of brain glycolipid storage nor improvement in neuronal pathology could be detected, suggesting a complex pathogenic mechanism. Histological analysis revealed beta-hexosaminidase-positive cells in the central nervous system and visceral organs with a concomitant reduction of colloidal iron-positive macrophages. These results may be important for the design of treatment approaches for the GM2 gangliosidoses.

Full Text

The Full Text of this article is available as a PDF (492.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastedo L., Sands M. S., Lambert D. T., Pisa M. A., Birkenmeier E., Chang P. L. Behavioral consequences of bone marrow transplantation in the treatment of murine mucopolysaccharidosis type VII. J Clin Invest. 1994 Sep;94(3):1180–1186. doi: 10.1172/JCI117434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birkenmeier E. H., Barker J. E., Vogler C. A., Kyle J. W., Sly W. S., Gwynn B., Levy B., Pegors C. Increased life span and correction of metabolic defects in murine mucopolysaccharidosis type VII after syngeneic bone marrow transplantation. Blood. 1991 Dec 1;78(11):3081–3092. [PubMed] [Google Scholar]
  3. Dickson D. W., Lee S. C., Mattiace L. A., Yen S. H., Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia. 1993 Jan;7(1):75–83. doi: 10.1002/glia.440070113. [DOI] [PubMed] [Google Scholar]
  4. Griffin D. E. Cytokines in the brain during viral infection: clues to HIV-associated dementia. J Clin Invest. 1997 Dec 15;100(12):2948–2951. doi: 10.1172/JCI119847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haskins M. Bone marrow transplantation therapy for metabolic disease: animal models as predictors of success and in utero approaches. Bone Marrow Transplant. 1996 Dec;18 (Suppl 3):S25–S27. [PubMed] [Google Scholar]
  6. Hoogerbrugge P. M., Brouwer O. F., Bordigoni P., Ringden O., Kapaun P., Ortega J. J., O'Meara A., Cornu G., Souillet G., Frappaz D. Allogeneic bone marrow transplantation for lysosomal storage diseases. The European Group for Bone Marrow Transplantation. Lancet. 1995 Jun 3;345(8962):1398–1402. doi: 10.1016/s0140-6736(95)92597-x. [DOI] [PubMed] [Google Scholar]
  7. Hoogerbrugge P. M., Poorthuis B. J., Wagemaker G., van Bekkum D. W., Suzuki K. Alleviation of neurologic symptoms after bone marrow transplantation in twitcher mice. Transplant Proc. 1989 Feb;21(1 Pt 3):2980–2981. [PubMed] [Google Scholar]
  8. Hoogerbrugge P. M., Suzuki K., Suzuki K., Poorthuis B. J., Kobayashi T., Wagemaker G., van Bekkum D. W. Donor-derived cells in the central nervous system of twitcher mice after bone marrow transplantation. Science. 1988 Feb 26;239(4843):1035–1038. doi: 10.1126/science.3278379. [DOI] [PubMed] [Google Scholar]
  9. Huang J. Q., Trasler J. M., Igdoura S., Michaud J., Hanal N., Gravel R. A. Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases. Hum Mol Genet. 1997 Oct;6(11):1879–1885. doi: 10.1093/hmg/6.11.1879. [DOI] [PubMed] [Google Scholar]
  10. Krivit W., Sung J. H., Shapiro E. G., Lockman L. A. Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant. 1995 Jul-Aug;4(4):385–392. doi: 10.1177/096368979500400409. [DOI] [PubMed] [Google Scholar]
  11. Leinekugel P., Michel S., Conzelmann E., Sandhoff K. Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet. 1992 Mar;88(5):513–523. doi: 10.1007/BF00219337. [DOI] [PubMed] [Google Scholar]
  12. Licinio J., Wong M. L. Pathways and mechanisms for cytokine signaling of the central nervous system. J Clin Invest. 1997 Dec 15;100(12):2941–2947. doi: 10.1172/JCI119846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neuenhofer S., Conzelmann E., Schwarzmann G., Egge H., Sandhoff K. Occurrence of lysoganglioside lyso-GM2 (II3-Neu5Ac-gangliotriaosylsphingosine) in GM2 gangliosidosis brain. Biol Chem Hoppe Seyler. 1986 Mar;367(3):241–244. doi: 10.1515/bchm3.1986.367.1.241. [DOI] [PubMed] [Google Scholar]
  14. Platt F. M., Neises G. R., Reinkensmeier G., Townsend M. J., Perry V. H., Proia R. L., Winchester B., Dwek R. A., Butters T. D. Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin. Science. 1997 Apr 18;276(5311):428–431. doi: 10.1126/science.276.5311.428. [DOI] [PubMed] [Google Scholar]
  15. Sands M. S., Barker J. E., Vogler C., Levy B., Gwynn B., Galvin N., Sly W. S., Birkenmeier E. Treatment of murine mucopolysaccharidosis type VII by syngeneic bone marrow transplantation in neonates. Lab Invest. 1993 Jun;68(6):676–686. [PubMed] [Google Scholar]
  16. Sands M. S., Vogler C., Torrey A., Levy B., Gwynn B., Grubb J., Sly W. S., Birkenmeier E. H. Murine mucopolysaccharidosis type VII: long term therapeutic effects of enzyme replacement and enzyme replacement followed by bone marrow transplantation. J Clin Invest. 1997 Apr 1;99(7):1596–1605. doi: 10.1172/JCI119322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sango K., McDonald M. P., Crawley J. N., Mack M. L., Tifft C. J., Skop E., Starr C. M., Hoffmann A., Sandhoff K., Suzuki K. Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nat Genet. 1996 Nov;14(3):348–352. doi: 10.1038/ng1196-348. [DOI] [PubMed] [Google Scholar]
  18. Sango K., Yamanaka S., Hoffmann A., Okuda Y., Grinberg A., Westphal H., McDonald M. P., Crawley J. N., Sandhoff K., Suzuki K. Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nat Genet. 1995 Oct;11(2):170–176. doi: 10.1038/ng1095-170. [DOI] [PubMed] [Google Scholar]
  19. Shull R. M., Hastings N. E., Selcer R. R., Jones J. B., Smith J. R., Cullen W. C., Constantopoulos G. Bone marrow transplantation in canine mucopolysaccharidosis I. Effects within the central nervous system. J Clin Invest. 1987 Feb;79(2):435–443. doi: 10.1172/JCI112830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Starr C. M., Masada R. I., Hague C., Skop E., Klock J. C. Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J Chromatogr A. 1996 Jan 12;720(1-2):295–321. doi: 10.1016/0021-9673(95)00749-0. [DOI] [PubMed] [Google Scholar]
  21. Suzuki K., Hoogerbrugge P. M., Poorthuis B. J., Bekkum D. W., Suzuki K. The twitcher mouse. Central nervous system pathology after bone marrow transplantation. Lab Invest. 1988 Mar;58(3):302–309. [PubMed] [Google Scholar]
  22. Taylor R. M., Farrow B. R., Stewart G. J., Healy P. J., Tiver K. Lysosomal enzyme replacement in neural tissue by allogeneic bone marrow transplantation following total lymphoid irradiation in canine fucosidosis. Transplant Proc. 1987 Feb;19(1 Pt 3):2730–2734. [PubMed] [Google Scholar]
  23. Walkley S. U., Dobrenis K. Bone marrow transplantation for lysosomal diseases. Lancet. 1995 Jun 3;345(8962):1382–1383. doi: 10.1016/s0140-6736(95)92590-2. [DOI] [PubMed] [Google Scholar]
  24. Walkley S. U., Thrall M. A., Dobrenis K., Huang M., March P. A., Siegel D. A., Wurzelmann S. Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):2970–2974. doi: 10.1073/pnas.91.8.2970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zhou X. Y., Morreau H., Rottier R., Davis D., Bonten E., Gillemans N., Wenger D., Grosveld F. G., Doherty P., Suzuki K. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev. 1995 Nov 1;9(21):2623–2634. doi: 10.1101/gad.9.21.2623. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES