Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 1;101(9):1905–1915. doi: 10.1172/JCI656

Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion.

M Morigi 1, S Angioletti 1, B Imberti 1, R Donadelli 1, G Micheletti 1, M Figliuzzi 1, A Remuzzi 1, C Zoja 1, G Remuzzi 1
PMCID: PMC508777  PMID: 9576755

Abstract

We addressed the role of hyperglycemia in leukocyte-endothelium interaction under flow conditions by exposing human umbilical vein endothelial cells for 24 h to normal (5 mM), high concentration of glucose (30 mM), advanced glycosylation end product-albumin (100 microg/ml), or hyperglycemic (174-316 mg/dl) sera from patients with diabetes and abnormal hemoglobin A1c (8.1+/-1.4%). At the end of incubation endothelial cells were perfused with total leukocyte suspension in a parallel plate flow chamber under laminar flow (1.5 dyn/cm2). Rolling and adherent cells were evaluated by digital image processing. Results showed that 30 mM glucose significantly (P < 0. 01) increased the number of adherent leukocytes to endothelial cells in respect to control (5 mM glucose; 151+/-19 versus 33+/-8 cells/mm2). A similar response was induced by endothelial stimulation with IL-1beta, here used as positive control (195+/-20 cells/mm2). The number of rolling cells on endothelial surface was not affected by high glucose level. Stable adhesion of leukocytes to glucose-treated as well as to IL-1beta-stimulated endothelial cells was preceded by short interaction of leukocytes with the endothelial surface. The distance travelled by leukocytes before arrest on 30 mM glucose, or on IL-1beta-treated endothelial cells, was significantly (P < 0.01) higher than that observed for leukocytes adhering on control endothelium (30 mM glucose: 76.7+/-3.5; IL1beta: 69.7+/-4 versus 5 mM glucose: 21.5+/-5 microm). Functional blocking of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells with the corresponding mouse mAb significantly inhibited glucose-induced increase in leukocyte adhesion (67+/-16, 83+/-12, 62+/-8 versus 144+/-21 cells/ mm2). Confocal fluorescence microscopy studies showed that 30 mM glucose induced an increase in endothelial surface expression of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1. Electrophoretic mobility shift assay of nuclear extracts of human umbilical vein endothelial cells (HUVEC) exposed for 1 h to 30 mM glucose revealed an intense NF-kB activation. Treatment of HUVEC exposed to high glucose with the NF-kB inhibitors pyrrolidinedithiocarbamate (100 microM) and tosyl-phe-chloromethylketone (25 microM) significantly reduced (P < 0.05) leukocyte adhesion in respect to HUVEC treated with glucose alone. A significant (P < 0.01) inhibitory effect on glucose-induced leukocyte adhesion was observed after blocking protein kinase C activity with staurosporine (5 nM). When HUVEC were treated with specific antisense oligodesoxynucleotides against PKCalpha and PKCepsilon isoforms before the addition of 30 mM glucose, a significant (P < 0.05) reduction in the adhesion was also seen. Advanced glycosylation end product-albumin significantly increased the number of adhering leukocytes in respect to native albumin used as control (110+/-16 versus 66+/-7, P < 0.01). Sera from diabetic patients significantly (P < 0.01) enhanced leukocyte adhesion as compared with controls, despite normal levels of IL-1beta and TNFalpha in these sera. These data indicate that high glucose concentration and hyperglycemia promote leukocyte adhesion to the endothelium through upregulation of cell surface expression of adhesive proteins, possibly depending on NF-kB activation.

Full Text

The Full Text of this article is available as a PDF (566.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brady H. R. Leukocyte adhesion molecules and kidney diseases. Kidney Int. 1994 May;45(5):1285–1300. doi: 10.1038/ki.1994.169. [DOI] [PubMed] [Google Scholar]
  2. Brett J., Schmidt A. M., Yan S. D., Zou Y. S., Weidman E., Pinsky D., Nowygrod R., Neeper M., Przysiecki C., Shaw A. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993 Dec;143(6):1699–1712. [PMC free article] [PubMed] [Google Scholar]
  3. Bucala R., Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis. 1995 Dec;26(6):875–888. doi: 10.1016/0272-6386(95)90051-9. [DOI] [PubMed] [Google Scholar]
  4. Dosquet C., Weill D., Wautier J. L. Molecular mechanism of blood monocyte adhesion to vascular endothelial cells. Nouv Rev Fr Hematol. 1992;34 (Suppl):S55–S59. [PubMed] [Google Scholar]
  5. Ghosh S., Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B. Nature. 1990 Apr 12;344(6267):678–682. doi: 10.1038/344678a0. [DOI] [PubMed] [Google Scholar]
  6. Hadcock S., Richardson M., Winocour P. D., Hatton M. W. Intimal alterations in rabbit aortas during the first 6 months of alloxan-induced diabetes. Arterioscler Thromb. 1991 May-Jun;11(3):517–529. doi: 10.1161/01.atv.11.3.517. [DOI] [PubMed] [Google Scholar]
  7. Haller H., Baur E., Quass P., Behrend M., Lindschau C., Distler A., Luft F. C. High glucose concentrations and protein kinase C isoforms in vascular smooth muscle cells. Kidney Int. 1995 Apr;47(4):1057–1067. doi: 10.1038/ki.1995.152. [DOI] [PubMed] [Google Scholar]
  8. Hempel A., Maasch C., Heintze U., Lindschau C., Dietz R., Luft F. C., Haller H. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res. 1997 Sep;81(3):363–371. doi: 10.1161/01.res.81.3.363. [DOI] [PubMed] [Google Scholar]
  9. Henkel T., Machleidt T., Alkalay I., Krönke M., Ben-Neriah Y., Baeuerle P. A. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature. 1993 Sep 9;365(6442):182–185. doi: 10.1038/365182a0. [DOI] [PubMed] [Google Scholar]
  10. Hänninen A., Jalkanen S., Salmi M., Toikkanen S., Nikolakaros G., Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992 Nov;90(5):1901–1910. doi: 10.1172/JCI116067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kashiwagi A., Asahina T., Nishio Y., Ikebuchi M., Tanaka Y., Kikkawa R., Shigeta Y. Glycation, oxidative stress, and scavenger activity: glucose metabolism and radical scavenger dysfunction in endothelial cells. Diabetes. 1996 Jul;45 (Suppl 3):S84–S86. doi: 10.2337/diab.45.3.s84. [DOI] [PubMed] [Google Scholar]
  13. Kim J. A., Berliner J. A., Natarajan R. D., Nadler J. L. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes. 1994 Sep;43(9):1103–1107. doi: 10.2337/diab.43.9.1103. [DOI] [PubMed] [Google Scholar]
  14. Kinoshita J. H., Nishimura C. The involvement of aldose reductase in diabetic complications. Diabetes Metab Rev. 1988 Jun;4(4):323–337. doi: 10.1002/dmr.5610040403. [DOI] [PubMed] [Google Scholar]
  15. Kirstein M., Brett J., Radoff S., Ogawa S., Stern D., Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9010–9014. doi: 10.1073/pnas.87.22.9010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koenig R. J., Peterson C. M., Jones R. L., Saudek C., Lehrman M., Cerami A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med. 1976 Aug 19;295(8):417–420. doi: 10.1056/NEJM197608192950804. [DOI] [PubMed] [Google Scholar]
  17. Lawrence M. B., McIntire L. V., Eskin S. G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood. 1987 Nov;70(5):1284–1290. [PubMed] [Google Scholar]
  18. Lawrence M. B., Smith C. W., Eskin S. G., McIntire L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [PubMed] [Google Scholar]
  19. Lawrence M. B., Springer T. A. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991 May 31;65(5):859–873. doi: 10.1016/0092-8674(91)90393-d. [DOI] [PubMed] [Google Scholar]
  20. Lawrence M. B., Springer T. A. Neutrophils roll on E-selectin. J Immunol. 1993 Dec 1;151(11):6338–6346. [PubMed] [Google Scholar]
  21. Ledebur H. C., Parks T. P. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J Biol Chem. 1995 Jan 13;270(2):933–943. doi: 10.1074/jbc.270.2.933. [DOI] [PubMed] [Google Scholar]
  22. Lee T. S., MacGregor L. C., Fluharty S. J., King G. L. Differential regulation of protein kinase C and (Na,K)-adenosine triphosphatase activities by elevated glucose levels in retinal capillary endothelial cells. J Clin Invest. 1989 Jan;83(1):90–94. doi: 10.1172/JCI113889. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  23. Ley K., Bullard D. C., Arbonés M. L., Bosse R., Vestweber D., Tedder T. F., Beaudet A. L. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med. 1995 Feb 1;181(2):669–675. doi: 10.1084/jem.181.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Macconi D., Foppolo M., Paris S., Noris M., Aiello S., Remuzzi G., Remuzzi A. PAF mediates neutrophil adhesion to thrombin or TNF-stimulated endothelial cells under shear stress. Am J Physiol. 1995 Jul;269(1 Pt 1):C42–C47. doi: 10.1152/ajpcell.1995.269.1.C42. [DOI] [PubMed] [Google Scholar]
  25. McLeod D. S., Lefer D. J., Merges C., Lutty G. A. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol. 1995 Sep;147(3):642–653. [PMC free article] [PubMed] [Google Scholar]
  26. Mitsumata M., Fishel R. S., Nerem R. M., Alexander R. W., Berk B. C. Fluid shear stress stimulates platelet-derived growth factor expression in endothelial cells. Am J Physiol. 1993 Jul;265(1 Pt 2):H3–H8. doi: 10.1152/ajpheart.1993.265.1.H3. [DOI] [PubMed] [Google Scholar]
  27. Morigi M., Zoja C., Figliuzzi M., Foppolo M., Micheletti G., Bontempelli M., Saronni M., Remuzzi G., Remuzzi A. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood. 1995 Apr 1;85(7):1696–1703. [PubMed] [Google Scholar]
  28. Neeper M., Schmidt A. M., Brett J., Yan S. D., Wang F., Pan Y. C., Elliston K., Stern D., Shaw A. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992 Jul 25;267(21):14998–15004. [PubMed] [Google Scholar]
  29. Orthner C. L., Rodgers G. M., Fitzgerald L. A. Pyrrolidine dithiocarbamate abrogates tissue factor (TF) expression by endothelial cells: evidence implicating nuclear factor-kappa B in TF induction by diverse agonists. Blood. 1995 Jul 15;86(2):436–443. [PubMed] [Google Scholar]
  30. Panés J., Kurose I., Rodriguez-Vaca D., Anderson D. C., Miyasaka M., Tso P., Granger D. N. Diabetes exacerbates inflammatory responses to ischemia-reperfusion. Circulation. 1996 Jan 1;93(1):161–167. doi: 10.1161/01.cir.93.1.161. [DOI] [PubMed] [Google Scholar]
  31. Porte D., Jr, Schwartz M. W. Diabetes complications: why is glucose potentially toxic? Science. 1996 May 3;272(5262):699–700. doi: 10.1126/science.272.5262.699. [DOI] [PubMed] [Google Scholar]
  32. Read M. A., Whitley M. Z., Williams A. J., Collins T. NF-kappa B and I kappa B alpha: an inducible regulatory system in endothelial activation. J Exp Med. 1994 Feb 1;179(2):503–512. doi: 10.1084/jem.179.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rovin B. H., Dickerson J. A., Tan L. C., Hebert C. A. Activation of nuclear factor-kappa B correlates with MCP-1 expression by human mesangial cells. Kidney Int. 1995 Oct;48(4):1263–1271. doi: 10.1038/ki.1995.410. [DOI] [PubMed] [Google Scholar]
  34. Ruderman N. B., Williamson J. R., Brownlee M. Glucose and diabetic vascular disease. FASEB J. 1992 Aug;6(11):2905–2914. doi: 10.1096/fasebj.6.11.1644256. [DOI] [PubMed] [Google Scholar]
  35. Satriano J., Schlondorff D. Activation and attenuation of transcription factor NF-kB in mouse glomerular mesangial cells in response to tumor necrosis factor-alpha, immunoglobulin G, and adenosine 3':5'-cyclic monophosphate. Evidence for involvement of reactive oxygen species. J Clin Invest. 1994 Oct;94(4):1629–1636. doi: 10.1172/JCI117505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schmidt A. M., Hori O., Chen J. X., Li J. F., Crandall J., Zhang J., Cao R., Yan S. D., Brett J., Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995 Sep;96(3):1395–1403. doi: 10.1172/JCI118175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmidt A. M., Yan S. D., Brett J., Mora R., Nowygrod R., Stern D. Regulation of human mononuclear phagocyte migration by cell surface-binding proteins for advanced glycation end products. J Clin Invest. 1993 May;91(5):2155–2168. doi: 10.1172/JCI116442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schreck R., Albermann K., Baeuerle P. A. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17(4):221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
  39. Schröder S., Palinski W., Schmid-Schönbein G. W. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. 1991 Jul;139(1):81–100. [PMC free article] [PubMed] [Google Scholar]
  40. Shu H. B., Agranoff A. B., Nabel E. G., Leung K., Duckett C. S., Neish A. S., Collins T., Nabel G. J. Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells. Mol Cell Biol. 1993 Oct;13(10):6283–6289. doi: 10.1128/mcb.13.10.6283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takata K., Horiuchi S., Araki N., Shiga M., Saitoh M., Morino Y. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J Biol Chem. 1988 Oct 15;263(29):14819–14825. [PubMed] [Google Scholar]
  42. Tesfamariam B., Cohen R. A. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol. 1992 Aug;263(2 Pt 2):H321–H326. doi: 10.1152/ajpheart.1992.263.2.H321. [DOI] [PubMed] [Google Scholar]
  43. Vlassara H., Brownlee M., Manogue K. R., Dinarello C. A., Pasagian A. Cachectin/TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodeling. Science. 1988 Jun 10;240(4858):1546–1548. doi: 10.1126/science.3259727. [DOI] [PubMed] [Google Scholar]
  44. Vlassara H., Bucala R., Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab Invest. 1994 Feb;70(2):138–151. [PubMed] [Google Scholar]
  45. Vlassara H., Fuh H., Makita Z., Krungkrai S., Cerami A., Bucala R. Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12043–12047. doi: 10.1073/pnas.89.24.12043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vlassara H. Receptor-mediated interactions of advanced glycosylation end products with cellular components within diabetic tissues. Diabetes. 1992 Oct;41 (Suppl 2):52–56. doi: 10.2337/diab.41.2.s52. [DOI] [PubMed] [Google Scholar]
  47. Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
  48. Wuthrich R. P. Intercellular adhesion molecules and vascular cell adhesion molecule-1 and the kidney. J Am Soc Nephrol. 1992 Dec;3(6):1201–1211. doi: 10.1681/ASN.V361201. [DOI] [PubMed] [Google Scholar]
  49. Yang X. D., Michie S. A., Mebius R. E., Tisch R., Weissman I., McDevitt H. O. The role of cell adhesion molecules in the development of IDDM: implications for pathogenesis and therapy. Diabetes. 1996 Jun;45(6):705–710. doi: 10.2337/diab.45.6.705. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES