Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 1;101(9):1923–1931. doi: 10.1172/JCI1983

Dual implication of 2',3'-cyclic nucleotide 3' phosphodiesterase as major autoantigen and C3 complement-binding protein in the pathogenesis of multiple sclerosis.

M J Walsh 1, J M Murray 1
PMCID: PMC508779  PMID: 9576757

Abstract

Multiple sclerosis (MS) is characterized by intra-blood-brain barrier immunoglobulin synthesis that persists lifelong. Subcellular fractionation and two-dimensional electrophoresis were used in conjunction with immune precipitation and immunoblotting to identify antigenic determinants for this immunoglobulin. We report that 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a protein associated with oligodendrocyte/myelin membranes, also present in lymphocytes and retina, is one major target for the humoral response. Antibodies to CNP are detected in sera of 74% of MS patients. The antibodies are IgM and are present in serum in high titer as well as in cerebrospinal fluid. The antibody response is temporally persistent, consistent with systemic immune activation and persistent antigenic stimulation. Moreover, CNP is isolated as an immune complex from MS brain. CNP is expressed as two isoforms, with CNPII identical to CNPI but with a 20-amino acid extension at the amino terminus of CNPII; however, the antibody response is exclusively restricted to CNPI. In contrast, both isoforms bind the C3 complement, providing a plausible mechanism in MS central nervous system (CNS) for opsonization of myelin membrane CNP, mediated via the C3 receptor, and phagocytosis of CNP-Ig immune complexes, mediated by membrane Ig Fc receptors of macrophages and CNS microglia.

Full Text

The Full Text of this article is available as a PDF (331.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agrawal H. C., Sprinkle T. J., Agrawal D. 2',3'-cyclic nucleotide-3'-phosphodiesterase in the central nervous system is fatty-acylated by thioester linkage. J Biol Chem. 1990 Jul 15;265(20):11849–11853. [PubMed] [Google Scholar]
  3. Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P., Camilli P. D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151–156. doi: 10.1038/347151a0. [DOI] [PubMed] [Google Scholar]
  4. Bansil S., Cook S. D., Rohowsky-Kochan C. Multiple sclerosis: immune mechanism and update on current therapies. Ann Neurol. 1995 May;37 (Suppl 1):S87–101. doi: 10.1002/ana.410370710. [DOI] [PubMed] [Google Scholar]
  5. Bernier L., Alvarez F., Norgard E. M., Raible D. W., Mentaberry A., Schembri J. G., Sabatini D. D., Colman D. R. Molecular cloning of a 2',3'-cyclic nucleotide 3'-phosphodiesterase: mRNAs with different 5' ends encode the same set of proteins in nervous and lymphoid tissues. J Neurosci. 1987 Sep;7(9):2703–2710. doi: 10.1523/JNEUROSCI.07-09-02703.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bongioanni P., Fioretti C., Vanacore R., Bianchi F., Lombardo F., Ambrogi F., Meucci G. Lymphocyte subsets in multiple sclerosis. A study with two-colour fluorescence analysis. J Neurol Sci. 1996 Jul;139(1):71–77. [PubMed] [Google Scholar]
  7. Challoner P. B., Smith K. T., Parker J. D., MacLeod D. L., Coulter S. N., Rose T. M., Schultz E. R., Bennett J. L., Garber R. L., Chang M. Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7440–7444. doi: 10.1073/pnas.92.16.7440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clapshaw P. A., Müller H. W., Wiethölter H., Seifert W. Simultaneous measurement of 2':3' cyclic-nucleotide 3' phosphodiesterase and RNase activities in sera and spinal fluids of multiple sclerosis patients. J Neurochem. 1984 Jan;42(1):12–15. doi: 10.1111/j.1471-4159.1984.tb09690.x. [DOI] [PubMed] [Google Scholar]
  9. Colombo E., Banki K., Tatum A. H., Daucher J., Ferrante P., Murray R. S., Phillips P. E., Perl A. Comparative analysis of antibody and cell-mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis. J Clin Invest. 1997 Mar 15;99(6):1238–1250. doi: 10.1172/JCI119281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Compston D. A., Morgan B. P., Campbell A. K., Wilkins P., Cole G., Thomas N. D., Jasani B. Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol Appl Neurobiol. 1989 Jul-Aug;15(4):307–316. doi: 10.1111/j.1365-2990.1989.tb01231.x. [DOI] [PubMed] [Google Scholar]
  11. Cox M. E., Gao E. N., Braun P. E. C-terminal CTII motif of 2',3'-cyclic nucleotide 3'-phosphodiesterase undergoes carboxylmethylation. J Neurosci Res. 1994 Dec 1;39(5):513–518. doi: 10.1002/jnr.490390502. [DOI] [PubMed] [Google Scholar]
  12. De Angelis D. A., Braun P. E. 2',3'-Cyclic nucleotide 3'-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner. J Neurochem. 1996 Sep;67(3):943–951. doi: 10.1046/j.1471-4159.1996.67030943.x. [DOI] [PubMed] [Google Scholar]
  13. Egensperger R., Maslim J., Bisti S., Holländer H., Stone J. Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Müller cells). Brain Res Dev Brain Res. 1996 Nov 22;97(1):1–8. doi: 10.1016/s0165-3806(96)00119-8. [DOI] [PubMed] [Google Scholar]
  14. Eisenberg R. The specificity and polyvalency of binding of a monoclonal rheumatoid factor. Immunochemistry. 1976 Apr;13(4):355–359. doi: 10.1016/0019-2791(76)90347-5. [DOI] [PubMed] [Google Scholar]
  15. Forsberg P., Henriksson A., Link H., Ohman S. Reference values for CSF-IgM, CSF-IgM/S-IgM ratio and IgM index, and its application to patients with multiple sclerosis and aseptic meningoencephalitis. Scand J Clin Lab Invest. 1984 Feb;44(1):7–12. doi: 10.3109/00365518409083780. [DOI] [PubMed] [Google Scholar]
  16. Gay D., Esiri M. Blood-brain barrier damage in acute multiple sclerosis plaques. An immunocytological study. Brain. 1991 Feb;114(Pt 1B):557–572. doi: 10.1093/brain/114.1.557. [DOI] [PubMed] [Google Scholar]
  17. Giulian D., Moore S. Identification of 2':3'-cyclic nucleotide 3'-phosphodiesterase in the vertebrate retina. J Biol Chem. 1980 Jul 10;255(13):5993–5995. [PubMed] [Google Scholar]
  18. Gorga J. C., Horejsí V., Johnson D. R., Raghupathy R., Strominger J. L. Purification and characterization of class II histocompatibility antigens from a homozygous human B cell line. J Biol Chem. 1987 Nov 25;262(33):16087–16094. [PubMed] [Google Scholar]
  19. Hafler D. A., Fox D. A., Manning M. E., Schlossman S. F., Reinherz E. L., Weiner H. L. In vivo activated T lymphocytes in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. N Engl J Med. 1985 May 30;312(22):1405–1411. doi: 10.1056/NEJM198505303122201. [DOI] [PubMed] [Google Scholar]
  20. KABAT E. A., FREEDMAN D. A. A study of the crystalline albumin, gamma globulin and total protein in the cerebrospinal fluid of 100 cases of multiple sclerosis and in other diseases. Am J Med Sci. 1950 Jan;219(1):55–64. doi: 10.1097/00000441-195001000-00009. [DOI] [PubMed] [Google Scholar]
  21. Kermode A. G., Thompson A. J., Tofts P., MacManus D. G., Kendall B. E., Kingsley D. P., Moseley I. F., Rudge P., McDonald W. I. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain. 1990 Oct;113(Pt 5):1477–1489. doi: 10.1093/brain/113.5.1477. [DOI] [PubMed] [Google Scholar]
  22. Kurihara T., Tohyama Y., Yamamoto J., Kanamatsu T., Watanabe R., Kitajima S. Origin of brain 2',3'-cyclic-nucleotide 3'-phosphodiesterase doublet. Neurosci Lett. 1992 Apr 13;138(1):49–52. doi: 10.1016/0304-3940(92)90469-n. [DOI] [PubMed] [Google Scholar]
  23. Lajtha A., Toth J., Fujimoto K., Agrawal H. C. Turnover of myelin proteins in mouse brain in vivo. Biochem J. 1977 May 15;164(2):323–329. doi: 10.1042/bj1640323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lambris J. D. The multifunctional role of C3, the third component of complement. Immunol Today. 1988 Dec;9(12):387–393. doi: 10.1016/0167-5699(88)91240-6. [DOI] [PubMed] [Google Scholar]
  25. Latov N. Pathogenesis and therapy of neuropathies associated with monoclonal gammopathies. Ann Neurol. 1995 May;37 (Suppl 1):S32–S42. doi: 10.1002/ana.410370705. [DOI] [PubMed] [Google Scholar]
  26. Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases. Annu Rev Immunol. 1992;10:153–187. doi: 10.1146/annurev.iy.10.040192.001101. [DOI] [PubMed] [Google Scholar]
  27. Miller D. H., Albert P. S., Barkhof F., Francis G., Frank J. A., Hodgkinson S., Lublin F. D., Paty D. W., Reingold S. C., Simon J. Guidelines for the use of magnetic resonance techniques in monitoring the treatment of multiple sclerosis. US National MS Society Task Force. Ann Neurol. 1996 Jan;39(1):6–16. doi: 10.1002/ana.410390104. [DOI] [PubMed] [Google Scholar]
  28. Newman S. L., Mikus L. K. Deposition of C3b and iC3b onto particulate activators of the human complement system. Quantitation with monoclonal antibodies to human C3. J Exp Med. 1985 Jun 1;161(6):1414–1431. doi: 10.1084/jem.161.6.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nezlin R., Freywald A., Oppermann M. Proteins separated from human IgG molecules. Mol Immunol. 1993 Jul;30(10):935–940. doi: 10.1016/0161-5890(93)90018-7. [DOI] [PubMed] [Google Scholar]
  30. Nores G. A., Dohi T., Taniguchi M., Hakomori S. Density-dependent recognition of cell surface GM3 by a certain anti-melanoma antibody, and GM3 lactone as a possible immunogen: requirements for tumor-associated antigen and immunogen. J Immunol. 1987 Nov 1;139(9):3171–3176. [PubMed] [Google Scholar]
  31. Norton W. T. Isolation of myelin from nerve tissue. Methods Enzymol. 1974;31:435–444. doi: 10.1016/0076-6879(74)31049-x. [DOI] [PubMed] [Google Scholar]
  32. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  33. Penfold P. L., Provis J. M., Liew S. C. Human retinal microglia express phenotypic characteristics in common with dendritic antigen-presenting cells. J Neuroimmunol. 1993 Jun;45(1-2):183–191. doi: 10.1016/0165-5728(93)90179-3. [DOI] [PubMed] [Google Scholar]
  34. Piddlesden S. J., Lassmann H., Zimprich F., Morgan B. P., Linington C. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am J Pathol. 1993 Aug;143(2):555–564. [PMC free article] [PubMed] [Google Scholar]
  35. Piddlesden S. J., Storch M. K., Hibbs M., Freeman A. M., Lassmann H., Morgan B. P. Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol. 1994 Jun 1;152(11):5477–5484. [PubMed] [Google Scholar]
  36. Pozzilli P. Prevention of insulin-dependent diabetes: where are we now? Diabetes Metab Rev. 1996 Jul;12(2):127–135. doi: 10.1002/(SICI)1099-0895(199607)12:2<127::AID-DMR157>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  37. Prineas J. W., Kwon E. E., Goldenberg P. Z., Ilyas A. A., Quarles R. H., Benjamins J. A., Sprinkle T. J. Multiple sclerosis. Oligodendrocyte proliferation and differentiation in fresh lesions. Lab Invest. 1989 Nov;61(5):489–503. [PubMed] [Google Scholar]
  38. Roubey R. A. Autoantibodies to phospholipid-binding plasma proteins: a new view of lupus anticoagulants and other "antiphospholipid" autoantibodies. Blood. 1994 Nov 1;84(9):2854–2867. [PubMed] [Google Scholar]
  39. Sadegh-Nasseri S., Stern L. J., Wiley D. C., Germain R. N. MHC class II function preserved by low-affinity peptide interactions preceding stable binding. Nature. 1994 Aug 25;370(6491):647–650. doi: 10.1038/370647a0. [DOI] [PubMed] [Google Scholar]
  40. Sanders V. J., Waddell A. E., Felisan S. L., Li X., Conrad A. J., Tourtellotte W. W. Herpes simplex virus in postmortem multiple sclerosis brain tissue. Arch Neurol. 1996 Feb;53(2):125–133. doi: 10.1001/archneur.1996.00550020029012. [DOI] [PubMed] [Google Scholar]
  41. Schocket A. L., Weiner H. L. Lymphocytotoxic antibodies in family members of patients with multiple sclerosis. Lancet. 1978 Mar 18;1(8064):571–573. doi: 10.1016/s0140-6736(78)91023-1. [DOI] [PubMed] [Google Scholar]
  42. Selmaj K., Brosnan C. F., Raine C. S. Colocalization of lymphocytes bearing gamma delta T-cell receptor and heat shock protein hsp65+ oligodendrocytes in multiple sclerosis. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6452–6456. doi: 10.1073/pnas.88.15.6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sharief M. K., Thompson E. J. Intrathecal immunoglobulin M synthesis in multiple sclerosis. Relationship with clinical and cerebrospinal fluid parameters. Brain. 1991 Feb;114(Pt 1A):181–195. [PubMed] [Google Scholar]
  44. Simitsek P. D., Campbell D. G., Lanzavecchia A., Fairweather N., Watts C. Modulation of antigen processing by bound antibodies can boost or suppress class II major histocompatibility complex presentation of different T cell determinants. J Exp Med. 1995 Jun 1;181(6):1957–1963. doi: 10.1084/jem.181.6.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sprinkle T. J. 2',3'-cyclic nucleotide 3'-phosphodiesterase, an oligodendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit Rev Neurobiol. 1989;4(3):235–301. [PubMed] [Google Scholar]
  46. Sriram S., Rodriguez M. Indictment of the microglia as the villain in multiple sclerosis. Neurology. 1997 Feb;48(2):464–470. doi: 10.1212/wnl.48.2.464. [DOI] [PubMed] [Google Scholar]
  47. Tanaka Y., Morita C. T., Tanaka Y., Nieves E., Brenner M. B., Bloom B. R. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature. 1995 May 11;375(6527):155–158. doi: 10.1038/375155a0. [DOI] [PubMed] [Google Scholar]
  48. Thompson R. J. 2',3'-cyclic nucleotide-3'-phosphohydrolase and signal transduction in central nervous system myelin. Biochem Soc Trans. 1992 Aug;20(3):621–626. doi: 10.1042/bst0200621. [DOI] [PubMed] [Google Scholar]
  49. Tola M. R., Granieri E., Casetta I., Monari P., Scorrano R., Mazzeo V., Paolino E., Monetti V. C., Govoni V. Retinal periphlebitis in multiple sclerosis: a marker of disease activity? Eur Neurol. 1993;33(2):93–96. doi: 10.1159/000116912. [DOI] [PubMed] [Google Scholar]
  50. Tourtellotte W. W., Parker J. A. Multiple sclerosis: correlation between immunoglobulin-G in cerebrospinal fluid and brain. Science. 1966 Nov 25;154(3752):1044–1045. doi: 10.1126/science.154.3752.1044. [DOI] [PubMed] [Google Scholar]
  51. Trapp B. D., Bernier L., Andrews S. B., Colman D. R. Cellular and subcellular distribution of 2',3'-cyclic nucleotide 3'-phosphodiesterase and its mRNA in the rat central nervous system. J Neurochem. 1988 Sep;51(3):859–868. doi: 10.1111/j.1471-4159.1988.tb01822.x. [DOI] [PubMed] [Google Scholar]
  52. Vanguri P., Shin M. L. Activation of complement by myelin: identification of C1-binding proteins of human myelin from central nervous tissue. J Neurochem. 1986 May;46(5):1535–1541. doi: 10.1111/j.1471-4159.1986.tb01773.x. [DOI] [PubMed] [Google Scholar]
  53. Walsh M. J., Kuruc N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J Neurochem. 1992 Aug;59(2):667–678. doi: 10.1111/j.1471-4159.1992.tb09421.x. [DOI] [PubMed] [Google Scholar]
  54. Walsh M. J., McDougall J., Wittmann-Liebold B. Extended N-terminal sequencing of proteins of archaebacterial ribosomes blotted from two-dimensional gels onto glass fiber and poly(vinylidene difluoride) membrane. Biochemistry. 1988 Sep 6;27(18):6867–6876. doi: 10.1021/bi00418a032. [DOI] [PubMed] [Google Scholar]
  55. Walsh M. J., Tourtellotte W. W., Roman J., Dreyer W. Immunoglobulin G, A, and M--clonal restriction in multiple sclerosis cerebrospinal fluid and serum--analysis by two-dimensional electrophoresis. Clin Immunol Immunopathol. 1985 Jun;35(3):313–327. doi: 10.1016/0090-1229(85)90092-3. [DOI] [PubMed] [Google Scholar]
  56. Walsh M. J., Tourtellotte W. W. Temporal invariance and clonal uniformity of brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med. 1986 Jan 1;163(1):41–53. doi: 10.1084/jem.163.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yuki N., Hayashi N., Ohkawa K., Hagiwara H., Oshita M., Katayama K., Sasaki Y., Kasahara A., Fusamoto H., Kamada T. The significance of immunoglobulin M antibody response to hepatitis C virus core protein in patients with chronic hepatitis C. Hepatology. 1995 Aug;22(2):402–406. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES