Abstract
Loss of sex steroids causes an increase in both the resorption and formation of bone, with the former exceeding the latter. Based on evidence that the increased bone resorption after estrogen loss is due to an increase in osteoclastogenesis, we hypothesized that estrogen loss also stimulates osteoblastogenesis. We report that the number of mesenchymal osteoblast progenitors in the murine bone marrow was increased two- to threefold between 2 and 8 wk after ovariectomy and returned to control levels by 16 wk. Circulating osteocalcin, as well as osteoclastogenesis and the rate of bone loss, followed a very similar temporal pattern. Inhibition of bone resorption by administration of the bisphosphonate alendronate led to a decrease of the absolute number of osteoblast progenitors; however, it did not influence the stimulating effect of ovariectomy on osteoblastogenesis or osteoclastogenesis. These observations indicate that the increased bone formation that follows loss of estrogen can be explained, at least in part, by an increase in osteoblastogenesis. Moreover, they strongly suggest that unlike normal bone remodeling, whereby osteoblast development is stimulated by factors released from the bone matrix during osteoclastic resorption, estrogen deficiency unleashes signals that can stimulate the differentiation of osteoblast progenitors in a fashion that is autonomous from the need created by bone resorption, and therefore, inappropriate.
Full Text
The Full Text of this article is available as a PDF (273.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balena R., Toolan B. C., Shea M., Markatos A., Myers E. R., Lee S. C., Opas E. E., Seedor J. G., Klein H., Frankenfield D. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest. 1993 Dec;92(6):2577–2586. doi: 10.1172/JCI116872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellido T., Borba V. Z., Roberson P., Manolagas S. C. Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology. 1997 Sep;138(9):3666–3676. doi: 10.1210/endo.138.9.5364. [DOI] [PubMed] [Google Scholar]
- Bellido T., Jilka R. L., Boyce B. F., Girasole G., Broxmeyer H., Dalrymple S. A., Murray R., Manolagas S. C. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest. 1995 Jun;95(6):2886–2895. doi: 10.1172/JCI117995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellows C. G., Aubin J. E., Heersche J. N. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 1991 Jul;14(1):27–40. doi: 10.1016/0169-6009(91)90100-e. [DOI] [PubMed] [Google Scholar]
- Delmas P. D. Biochemical markers of bone turnover. J Bone Miner Res. 1993 Dec;8 (Suppl 2):S549–S555. doi: 10.1002/jbmr.5650081323. [DOI] [PubMed] [Google Scholar]
- Eastell R., Delmas P. D., Hodgson S. F., Eriksen E. F., Mann K. G., Riggs B. L. Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab. 1988 Oct;67(4):741–748. doi: 10.1210/jcem-67-4-741. [DOI] [PubMed] [Google Scholar]
- Eriksen E. F., Hodgson S. F., Eastell R., Cedel S. L., O'Fallon W. M., Riggs B. L. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res. 1990 Apr;5(4):311–319. doi: 10.1002/jbmr.5650050402. [DOI] [PubMed] [Google Scholar]
- Galien R., Garcia T. Estrogen receptor impairs interleukin-6 expression by preventing protein binding on the NF-kappaB site. Nucleic Acids Res. 1997 Jun 15;25(12):2424–2429. doi: 10.1093/nar/25.12.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girasole G., Jilka R. L., Passeri G., Boswell S., Boder G., Williams D. C., Manolagas S. C. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest. 1992 Mar;89(3):883–891. doi: 10.1172/JCI115668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattner R., Epker B. N., Frost H. M. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature. 1965 May 1;206(983):489–490. doi: 10.1038/206489a0. [DOI] [PubMed] [Google Scholar]
- Hayden J. M., Mohan S., Baylink D. J. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995 Aug;17(2 Suppl):93S–98S. doi: 10.1016/8756-3282(95)00186-h. [DOI] [PubMed] [Google Scholar]
- Hughes D. E., Wright K. R., Uy H. L., Sasaki A., Yoneda T., Roodman G. D., Mundy G. R., Boyce B. F. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995 Oct;10(10):1478–1487. doi: 10.1002/jbmr.5650101008. [DOI] [PubMed] [Google Scholar]
- Jilka R. L., Hangoc G., Girasole G., Passeri G., Williams D. C., Abrams J. S., Boyce B., Broxmeyer H., Manolagas S. C. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992 Jul 3;257(5066):88–91. doi: 10.1126/science.1621100. [DOI] [PubMed] [Google Scholar]
- Jilka R. L., Weinstein R. S., Takahashi K., Parfitt A. M., Manolagas S. C. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest. 1996 Apr 1;97(7):1732–1740. doi: 10.1172/JCI118600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalu D. N. The ovariectomized rat model of postmenopausal bone loss. Bone Miner. 1991 Dec;15(3):175–191. doi: 10.1016/0169-6009(91)90124-i. [DOI] [PubMed] [Google Scholar]
- Kassem M., Harris S. A., Spelsberg T. C., Riggs B. L. Estrogen inhibits interleukin-6 production and gene expression in a human osteoblastic cell line with high levels of estrogen receptors. J Bone Miner Res. 1996 Feb;11(2):193–199. doi: 10.1002/jbmr.5650110208. [DOI] [PubMed] [Google Scholar]
- Li M., Shen Y., Qi H., Wronski T. J. Comparative study of skeletal response to estrogen depletion at red and yellow marrow sites in rats. Anat Rec. 1996 Jul;245(3):472–480. doi: 10.1002/(SICI)1097-0185(199607)245:3<472::AID-AR3>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- Lin S. C., Yamate T., Taguchi Y., Borba V. Z., Girasole G., O'Brien C. A., Bellido T., Abe E., Manolagas S. C. Regulation of the gp80 and gp130 subunits of the IL-6 receptor by sex steroids in the murine bone marrow. J Clin Invest. 1997 Oct 15;100(8):1980–1990. doi: 10.1172/JCI119729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malik N., Haugen H. S., Modrell B., Shoyab M., Clegg C. H. Developmental abnormalities in mice transgenic for bovine oncostatin M. Mol Cell Biol. 1995 May;15(5):2349–2358. doi: 10.1128/mcb.15.5.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manolagas S. C., Jilka R. L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995 Feb 2;332(5):305–311. doi: 10.1056/NEJM199502023320506. [DOI] [PubMed] [Google Scholar]
- Metcalf D., Gearing D. P. Fatal syndrome in mice engrafted with cells producing high levels of the leukemia inhibitory factor. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5948–5952. doi: 10.1073/pnas.86.15.5948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modrowski D., Miravet L., Feuga M., Marie P. J. Increased proliferation of osteoblast precursor cells in estrogen-deficient rats. Am J Physiol. 1993 Feb;264(2 Pt 1):E190–E196. doi: 10.1152/ajpendo.1993.264.2.E190. [DOI] [PubMed] [Google Scholar]
- Most W., Schot L., Ederveen A., van der Wee-Pals L., Papapoulos S., Löwik C. In vitro and ex vivo evidence that estrogens suppress increased bone resorption induced by ovariectomy or PTH stimulation through an effect on osteoclastogenesis. J Bone Miner Res. 1995 Oct;10(10):1523–1530. doi: 10.1002/jbmr.5650101013. [DOI] [PubMed] [Google Scholar]
- Oreffo R. O., Mundy G. R., Seyedin S. M., Bonewald L. F. Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun. 1989 Feb 15;158(3):817–823. doi: 10.1016/0006-291x(89)92795-2. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M., Mathews C. H., Villanueva A. R., Kleerekoper M., Frame B., Rao D. S. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest. 1983 Oct;72(4):1396–1409. doi: 10.1172/JCI111096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poli V., Balena R., Fattori E., Markatos A., Yamamoto M., Tanaka H., Ciliberto G., Rodan G. A., Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994 Mar 1;13(5):1189–1196. doi: 10.1002/j.1460-2075.1994.tb06368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pottratz S. T., Bellido T., Mocharla H., Crabb D., Manolagas S. C. 17 beta-Estradiol inhibits expression of human interleukin-6 promoter-reporter constructs by a receptor-dependent mechanism. J Clin Invest. 1994 Mar;93(3):944–950. doi: 10.1172/JCI117100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray A., Prefontaine K. E., Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem. 1994 Apr 29;269(17):12940–12946. [PubMed] [Google Scholar]
- Roodman G. D. Advances in bone biology: the osteoclast. Endocr Rev. 1996 Aug;17(4):308–332. doi: 10.1210/edrv-17-4-308. [DOI] [PubMed] [Google Scholar]
- Scutt A., Kollenkirchen U., Bertram P. Effect of age and ovariectomy on fibroblastic colony-forming unit numbers in rat bone marrow. Calcif Tissue Int. 1996 Oct;59(4):309–310. doi: 10.1007/s002239900130. [DOI] [PubMed] [Google Scholar]
- Stein B., Yang M. X. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol. 1995 Sep;15(9):4971–4979. doi: 10.1128/mcb.15.9.4971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stepán J. J., Tesarová A., Havránek T., Jodl J., Formánková J., Pacovský V. Age and sex dependency of the biochemical indices of bone remodelling. Clin Chim Acta. 1985 Oct 15;151(3):273–283. doi: 10.1016/0009-8981(85)90090-7. [DOI] [PubMed] [Google Scholar]
- Suda T., Takahashi N., Martin T. J. Modulation of osteoclast differentiation. Endocr Rev. 1992 Feb;13(1):66–80. doi: 10.1210/edrv-13-1-66. [DOI] [PubMed] [Google Scholar]
- Van Vlasselaer P., Falla N., Snoeck H., Mathieu E. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood. 1994 Aug 1;84(3):753–763. [PubMed] [Google Scholar]
- Weinstein R. S., Jilka R. L., Parfitt A. M., Manolagas S. C. The effects of androgen deficiency on murine bone remodeling and bone mineral density are mediated via cells of the osteoblastic lineage. Endocrinology. 1997 Sep;138(9):4013–4021. doi: 10.1210/endo.138.9.5359. [DOI] [PubMed] [Google Scholar]
- Wronski T. J., Dann L. M., Scott K. S., Cintrón M. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989 Dec;45(6):360–366. doi: 10.1007/BF02556007. [DOI] [PubMed] [Google Scholar]
- van Beek E. R., Löwik C. W., Papapoulos S. E. Effect of alendronate treatment on the osteoclastogenic potential of bone marrow cells in mice. Bone. 1997 Apr;20(4):335–340. doi: 10.1016/s8756-3282(97)00006-9. [DOI] [PubMed] [Google Scholar]