Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2036–2041. doi: 10.1172/JCI2147

Biological activity of C-peptide on the skin microcirculation in patients with insulin-dependent diabetes mellitus.

T Forst 1, T Kunt 1, T Pohlmann 1, K Goitom 1, M Engelbach 1, J Beyer 1, A Pfützner 1
PMCID: PMC508791  PMID: 9593759

Abstract

19 insulin-dependent diabetes mellitus (IDDM) patients participated in a randomized double-blind crossover investigation to investigate the impact of human C-peptide on skin microvascular blood flow. The investigation was also carried out with 10 healthy volunteers. Blood pressure, heart rate, blood sugar, and C-peptide levels were monitored during a 60-min intravenous infusion period of C-peptide (8 pmol kg-1 min-1) or saline solution (154 mmol liter-1 NaCl), and 30 min after stopping the infusion. During the same time period, capillary blood cell velocity (CBV), laser Doppler flux (LDF), and skin temperature were assessed in the feet. In the verum arm, C-peptide levels increased after starting infusion to reach a maximum of 2.3+/-0.2 nmol liter-1 after 45 min, but remained below 0. 15 nmol liter-1 during the saline treatment. Baseline CBV was lower in diabetic patients compared with healthy subjects (147+/-3.6 vs. 162+/-4.2 micron s-1; P < 0.01). During C-peptide administration, CBV in IDDM patients increased progressively from 147+/-3.6 to 167+/-3.7 micron s-1; P < 0.001), whereas no significant change occurred during saline infusion or in healthy subjects. In contrast to the CBV measurements, the investigation of LDF, skin temperature, blood pressure, heart rate, or blood sugar did not demonstrate any significant change during the study. Replacement of human C-peptide in IDDM patients leads to a redistribution in skin microvascular blood flow levels comparable to levels in healthy subjects by increasing the nutritive CBV relative to subpapillary arteriovenous shunt flow.

Full Text

The Full Text of this article is available as a PDF (157.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benbow S. J., Pryce D. W., Noblett K., MacFarlane I. A., Friedmann P. S., Williams G. Flow motion in peripheral diabetic neuropathy. Clin Sci (Lond) 1995 Feb;88(2):191–196. doi: 10.1042/cs0880191. [DOI] [PubMed] [Google Scholar]
  2. Bircher A., de Boer E. M., Agner T., Wahlberg J. E., Serup J. Guidelines for measurement of cutaneous blood flow by laser Doppler flowmetry. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis. 1994 Feb;30(2):65–72. doi: 10.1111/j.1600-0536.1994.tb00565.x. [DOI] [PubMed] [Google Scholar]
  3. Bollinger A., Frey J., Jäger K., Furrer J., Seglias J., Siegenthaler W. Patterns of diffusion through skin capillaries in patients with long-term diabetes. N Engl J Med. 1982 Nov 18;307(21):1305–1310. doi: 10.1056/NEJM198211183072103. [DOI] [PubMed] [Google Scholar]
  4. Boulton A. J., Scarpello J. H., Ward J. D. Venous oxygenation in the diabetic neuropathic foot: evidence of arteriovenous shunting? Diabetologia. 1982 Jan;22(1):6–8. doi: 10.1007/BF00253861. [DOI] [PubMed] [Google Scholar]
  5. Claus D., Mustafa C., Vogel W., Herz M., Neundörfer B. Assessment of diabetic neuropathy: definition of norm and discrimination of abnormal nerve function. Muscle Nerve. 1993 Jul;16(7):757–768. doi: 10.1002/mus.880160711. [DOI] [PubMed] [Google Scholar]
  6. Coffman J. D. Total and nutritional blood flow in the finger. Clin Sci. 1972 Mar;42(3):243–250. doi: 10.1042/cs0420243. [DOI] [PubMed] [Google Scholar]
  7. Corbin D. O., Young R. J., Morrison D. C., Hoskins P., McDicken W. N., Housley E., Clarke B. F. Blood flow in the foot, polyneuropathy and foot ulceration in diabetes mellitus. Diabetologia. 1987 Jul;30(7):468–473. doi: 10.1007/BF00279614. [DOI] [PubMed] [Google Scholar]
  8. Ewald U., Tuvemo T., Rooth G. Early reduction of vascular reactivity in diabetic children detected by transcutaneous oxygen electrode. Lancet. 1981 Jun 13;1(8233):1287–1288. doi: 10.1016/s0140-6736(81)92460-0. [DOI] [PubMed] [Google Scholar]
  9. Flatt P. R., Swanston-Flatt S. K., Hampton S. M., Bailey C. J., Marks V. Specific binding of the C-peptide of proinsulin to cultured B-cells from a transplantable rat islet cell tumor. Biosci Rep. 1986 Feb;6(2):193–199. doi: 10.1007/BF01115006. [DOI] [PubMed] [Google Scholar]
  10. Flynn M. D., Boolell M., Tooke J. E., Watkins P. J. The effect of insulin infusion on capillary blood flow in the diabetic neuropathic foot. Diabet Med. 1992 Aug-Sep;9(7):630–634. doi: 10.1111/j.1464-5491.1992.tb01858.x. [DOI] [PubMed] [Google Scholar]
  11. Flynn M. D., Edmonds M. E., Tooke J. E., Watkins P. J. Direct measurement of capillary blood flow in the diabetic neuropathic foot. Diabetologia. 1988 Sep;31(9):652–656. doi: 10.1007/BF00278747. [DOI] [PubMed] [Google Scholar]
  12. Flynn M. D., Tooke J. E. Aetiology of diabetic foot ulceration: a role for the microcirculation? Diabet Med. 1992 May;9(4):320–329. doi: 10.1111/j.1464-5491.1992.tb01790.x. [DOI] [PubMed] [Google Scholar]
  13. Forst T., Pfützner A., Bauersachs R., Arin M., Bach B., Biehlmaier H., Küstner E., Beyer J. Comparison of the microvascular response to transcutaneous electrical nerve stimulation and postocclusive ischemia in the diabetic foot. J Diabetes Complications. 1997 Sep-Oct;11(5):291–297. doi: 10.1016/s1056-8727(96)00078-5. [DOI] [PubMed] [Google Scholar]
  14. Greene D. A., Lattimer S. A., Sima A. A. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987 Mar 5;316(10):599–606. doi: 10.1056/NEJM198703053161007. [DOI] [PubMed] [Google Scholar]
  15. Hoogwerf B. J., Barbosa J. J., Bantle J. P., Laine D., Goetz F. C. Urinary C-peptide as a measure of beta-cell function after a mixed meal in healthy subjects: comparison of four-hour urine C-peptide with serum insulin and plasma C-peptide. Diabetes Care. 1983 Sep-Oct;6(5):488–492. doi: 10.2337/diacare.6.5.488. [DOI] [PubMed] [Google Scholar]
  16. Horwitz D. L., Starr J. I., Mako M. E., Blackard W. G., Rubenstein A. H. Proinsulin, insulin, and C-peptide concentrations in human portal and peripheral blood. J Clin Invest. 1975 Jun;55(6):1278–1283. doi: 10.1172/JCI108047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ido Y., Vindigni A., Chang K., Stramm L., Chance R., Heath W. F., DiMarchi R. D., Di Cera E., Williamson J. R. Prevention of vascular and neural dysfunction in diabetic rats by C-peptide. Science. 1997 Jul 25;277(5325):563–566. doi: 10.1126/science.277.5325.563. [DOI] [PubMed] [Google Scholar]
  18. Johansson B. L., Borg K., Fernqvist-Forbes E., Odergren T., Remahl S., Wahren J. C-peptide improves autonomic nerve function in IDDM patients. Diabetologia. 1996 Jun;39(6):687–695. doi: 10.1007/BF00418540. [DOI] [PubMed] [Google Scholar]
  19. Johansson B. L., Kernell A., Sjöberg S., Wahren J. Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab. 1993 Oct;77(4):976–981. doi: 10.1210/jcem.77.4.8408474. [DOI] [PubMed] [Google Scholar]
  20. Johansson B. L., Linde B., Wahren J. Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992 Dec;35(12):1151–1158. doi: 10.1007/BF00401369. [DOI] [PubMed] [Google Scholar]
  21. Johansson B. L., Sjöberg S., Wahren J. The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia. 1992 Feb;35(2):121–128. doi: 10.1007/BF00402543. [DOI] [PubMed] [Google Scholar]
  22. Jörneskog G., Brismar K., Fagrell B. Skin capillary circulation is more impaired in the toes of diabetic than non-diabetic patients with peripheral vascular disease. Diabet Med. 1995 Jan;12(1):36–41. doi: 10.1111/j.1464-5491.1995.tb02059.x. [DOI] [PubMed] [Google Scholar]
  23. Jörneskog G., Brismar K., Fagrell B. Skin capillary circulation severely impaired in toes of patients with IDDM, with and without late diabetic complications. Diabetologia. 1995 Apr;38(4):474–480. doi: 10.1007/BF00410286. [DOI] [PubMed] [Google Scholar]
  24. Jörneskog G., Ostergren J., Tydén G., Bolinder J., Fagrell B. Does combined kidney and pancreas transplantation reverse functional diabetic microangiopathy? Transpl Int. 1990 Oct;3(3):167–170. doi: 10.1007/BF00355465. [DOI] [PubMed] [Google Scholar]
  25. Kernell A., Ludvigsson J., Finnström K. Vitreous fluorophotometry in juvenile diabetics with and without retinopathy in relation to metabolic control: insulin antibodies and c-peptide levels. Acta Ophthalmol (Copenh) 1990 Aug;68(4):415–420. doi: 10.1111/j.1755-3768.1990.tb01669.x. [DOI] [PubMed] [Google Scholar]
  26. McNally P. G., Watt P. A., Rimmer T., Burden A. C., Hearnshaw J. R., Thurston H. Impaired contraction and endothelium-dependent relaxation in isolated resistance vessels from patients with insulin-dependent diabetes mellitus. Clin Sci (Lond) 1994 Jul;87(1):31–36. doi: 10.1042/cs0870031. [DOI] [PubMed] [Google Scholar]
  27. Netten P. M., Wollersheim H., Thien T., Lutterman J. A. Skin microcirculation of the foot in diabetic neuropathy. Clin Sci (Lond) 1996 Nov;91(5):559–565. doi: 10.1042/cs0910559. [DOI] [PubMed] [Google Scholar]
  28. Ohtomo Y., Aperia A., Sahlgren B., Johansson B. L., Wahren J. C-peptide stimulates rat renal tubular Na+, K(+)-ATPase activity in synergism with neuropeptide Y. Diabetologia. 1996 Feb;39(2):199–205. doi: 10.1007/BF00403963. [DOI] [PubMed] [Google Scholar]
  29. Panza J. A., Quyyumi A. A., Brush J. E., Jr, Epstein S. E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990 Jul 5;323(1):22–27. doi: 10.1056/NEJM199007053230105. [DOI] [PubMed] [Google Scholar]
  30. Partanen J., Niskanen L., Lehtinen J., Mervaala E., Siitonen O., Uusitupa M. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1995 Jul 13;333(2):89–94. doi: 10.1056/NEJM199507133330203. [DOI] [PubMed] [Google Scholar]
  31. Polderman K. H., Stehouwer C. D., van Kamp G. J., Gooren L. J. Effects of insulin infusion on endothelium-derived vasoactive substances. Diabetologia. 1996 Nov;39(11):1284–1292. doi: 10.1007/s001250050571. [DOI] [PubMed] [Google Scholar]
  32. Rayman G., Malik R. A., Sharma A. K., Day J. L. Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients. Clin Sci (Lond) 1995 Nov;89(5):467–474. doi: 10.1042/cs0890467. [DOI] [PubMed] [Google Scholar]
  33. Rayman G., Williams S. A., Spencer P. D., Smaje L. H., Wise P. H., Tooke J. E. Impaired microvascular hyperaemic response to minor skin trauma in type I diabetes. Br Med J (Clin Res Ed) 1986 May 17;292(6531):1295–1298. doi: 10.1136/bmj.292.6531.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rendell M., Bamisedun O. Diabetic cutaneous microangiopathy. Am J Med. 1992 Dec;93(6):611–618. doi: 10.1016/0002-9343(92)90193-f. [DOI] [PubMed] [Google Scholar]
  35. Rendell M., Bergman T., O'Donnell G., Drobny E., Borgos J., Bonner R. F. Microvascular blood flow, volume, and velocity measured by laser Doppler techniques in IDDM. Diabetes. 1989 Jul;38(7):819–824. doi: 10.2337/diab.38.7.819. [DOI] [PubMed] [Google Scholar]
  36. Sandeman D. D., Shore A. C., Tooke J. E. Relation of skin capillary pressure in patients with insulin-dependent diabetes mellitus to complications and metabolic control. N Engl J Med. 1992 Sep 10;327(11):760–764. doi: 10.1056/NEJM199209103271103. [DOI] [PubMed] [Google Scholar]
  37. Scarpini E., Bianchi R., Moggio M., Sciacco M., Fiori M. G., Scarlato G. Decrease of nerve Na+,K(+)-ATPase activity in the pathogenesis of human diabetic neuropathy. J Neurol Sci. 1993 Dec 15;120(2):159–167. doi: 10.1016/0022-510x(93)90268-4. [DOI] [PubMed] [Google Scholar]
  38. Shami S. K., Chittenden S. J. Microangiopathy in diabetes mellitus: II. Features, complications and investigation. Diabetes Res. 1991 Aug;17(4):157–168. [PubMed] [Google Scholar]
  39. Sjöberg S., Gunnarsson R., Gjötterberg M., Lefvert A. K., Persson A., Ostman J. Residual insulin production, glycaemic control and prevalence of microvascular lesions and polyneuropathy in long-term type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987 Apr;30(4):208–213. doi: 10.1007/BF00270417. [DOI] [PubMed] [Google Scholar]
  40. Smits P., Kapma J. A., Jacobs M. C., Lutterman J., Thien T. Endothelium-dependent vascular relaxation in patients with type I diabetes. Diabetes. 1993 Jan;42(1):148–153. doi: 10.2337/diab.42.1.148. [DOI] [PubMed] [Google Scholar]
  41. Stansberry K. B., Shapiro S. A., Hill M. A., McNitt P. M., Meyer M. D., Vinik A. I. Impaired peripheral vasomotion in diabetes. Diabetes Care. 1996 Jul;19(7):715–721. doi: 10.2337/diacare.19.7.715. [DOI] [PubMed] [Google Scholar]
  42. Stevens M. J., Edmonds M. E., Foster A. V., Douglas S. L., Watkins P. J. Paradoxical blood flow responses in the diabetic neuropathic foot: an assessment of the contribution of vascular denervation and microangiopathy. Diabet Med. 1992 Jan-Feb;9(1):49–54. doi: 10.1111/j.1464-5491.1992.tb01713.x. [DOI] [PubMed] [Google Scholar]
  43. Tooke J. E., Lins P. E., Ostergren J., Adamson U., Fagrell B. The effects of intravenous insulin infusion on skin microcirculatory flow in Type 1 diabetes. Int J Microcirc Clin Exp. 1985;4(1):69–83. [PubMed] [Google Scholar]
  44. Tooke J. E., Lins P. E., Ostergren J., Fagrell B. Skin microvascular autoregulatory responses in type I diabetes: the influence of duration and control. Int J Microcirc Clin Exp. 1985;4(3):249–256. [PubMed] [Google Scholar]
  45. Tooke J. E. Methodologies used in the study of the microcirculation in diabetes mellitus. Diabetes Metab Rev. 1993 Apr;9(1):57–70. doi: 10.1002/dmr.5610090106. [DOI] [PubMed] [Google Scholar]
  46. Tooke J. E. Microvascular function in human diabetes. A physiological perspective. Diabetes. 1995 Jul;44(7):721–726. doi: 10.2337/diab.44.7.721. [DOI] [PubMed] [Google Scholar]
  47. Wahren J., Johansson B. L., Wallberg-Henriksson H. Does C-peptide have a physiological role? Diabetologia. 1994 Sep;37 (Suppl 2):S99–107. doi: 10.1007/BF00400832. [DOI] [PubMed] [Google Scholar]
  48. Walmsley D., Wiles P. G. Early loss of neurogenic inflammation in the human diabetic foot. Clin Sci (Lond) 1991 Jun;80(6):605–610. doi: 10.1042/cs0800605. [DOI] [PubMed] [Google Scholar]
  49. Watkins P. J., Edmonds M. E. Sympathetic nerve failure in diabetes. Diabetologia. 1983 Aug;25(2):73–77. doi: 10.1007/BF00250890. [DOI] [PubMed] [Google Scholar]
  50. Ziegler D., Laux G., Dannehl K., Spüler M., Mühlen H., Mayer P., Gries F. A. Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med. 1992 Mar;9(2):166–175. doi: 10.1111/j.1464-5491.1992.tb01754.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES