Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2054–2064. doi: 10.1172/JCI772

Backleak, tight junctions, and cell- cell adhesion in postischemic injury to the renal allograft.

O Kwon 1, W J Nelson 1, R Sibley 1, P Huie 1, J D Scandling 1, D Dafoe 1, E Alfrey 1, B D Myers 1
PMCID: PMC508793  PMID: 9593761

Abstract

Postischemic injury in recipients of 3-7-d-old renal allografts was classified into sustained (n = 19) or recovering (n = 20) acute renal failure (ARF) according to the prevailing inulin clearance. Recipients of optimally functioning, long-standing allografts and living donors undergoing nephrectomy served as functional (n = 14) and structural controls (n = 10), respectively. Marked elevation above control of fractional clearance of dextrans of graded size was consistent with transtubular backleak of 57% of filtrate (inulin) in sustained ARF. No backleak was detected in recovering ARF. To explore a structural basis for backleak, allograft biopsies were taken intraoperatively, 1 h after reperfusion in all recipients, and again on day 7 after transplant in a subset (n = 10). Electron microscopy revealed disruption of both apical and basolateral membranes of proximal tubule cells in both sustained and recovering ARF, but cell exfoliation and tubule basement membrane denudation were negligible. Histochemical analysis of membrane-associated adhesion complexes confirmed an abnormality of proximal but not distal tubule cells, marked in sustained ARF but not in recovering ARF. Staining for the zonula occludens complex (ZO-1) and adherens complex (alpha, beta, and gamma catenins) revealed diminished intensity and redistribution of each cytoskeletal protein from the apico-lateral membrane boundary. We conclude that impaired integrity of tight junctions and cell-cell adhesion in the proximal tubule provides a paracellular pathway through which filtrate leaks back in sustained allograft ARF.

Full Text

The Full Text of this article is available as a PDF (672.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alejandro V., Scandling J. D., Jr, Sibley R. K., Dafoe D., Alfrey E., Deen W., Myers B. D. Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft. J Clin Invest. 1995 Feb;95(2):820–831. doi: 10.1172/JCI117732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arendshorst W. J., Finn W. F., Gottschalk C. W. Micropuncture study of acute renal failure following temporary renal ischemia in the rat. Kidney Int Suppl. 1976 Oct;6:S100–S105. [PubMed] [Google Scholar]
  3. Bacallao R., Garfinkel A., Monke S., Zampighi G., Mandel L. J. ATP depletion: a novel method to study junctional properties in epithelial tissues. I. Rearrangement of the actin cytoskeleton. J Cell Sci. 1994 Dec;107(Pt 12):3301–3313. doi: 10.1242/jcs.107.12.3301. [DOI] [PubMed] [Google Scholar]
  4. Brenner B. M., Bohrer M. P., Baylis Ch, Deen W. M. Determinants of glomerular permselectivity: Insights derived from observations in vivo. Kidney Int. 1977 Oct;12(4):229–237. doi: 10.1038/ki.1977.107. [DOI] [PubMed] [Google Scholar]
  5. Burke T. J., Cronin R. E., Duchin K. L., Peterson L. N., Schrier R. W. Ischemia and tubule obstruction during acute renal failure in dogs: mannitol in protection. Am J Physiol. 1980 Apr;238(4):F305–F314. doi: 10.1152/ajprenal.1980.238.4.F305. [DOI] [PubMed] [Google Scholar]
  6. Chang R. L., Ueki I. F., Troy J. L., Deen W. M., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys J. 1975 Sep;15(9):887–906. doi: 10.1016/S0006-3495(75)85863-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang R. S., Robertson C. R., Deen W. M., Brenner B. M. Permselectivity of the glomerular capillary wall to macromolecules. I. Theoretical considerations. Biophys J. 1975 Sep;15(9):861–886. doi: 10.1016/S0006-3495(75)85862-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniels B. S., Hauser E. B., Deen W. M., Hostetter T. H. Glomerular basement membrane: in vitro studies of water and protein permeability. Am J Physiol. 1992 Jun;262(6 Pt 2):F919–F926. doi: 10.1152/ajprenal.1992.262.6.F919. [DOI] [PubMed] [Google Scholar]
  9. Deen W. M., Bridges C. R., Brenner B. M., Myers B. D. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol. 1985 Sep;249(3 Pt 2):F374–F389. doi: 10.1152/ajprenal.1985.249.3.F374. [DOI] [PubMed] [Google Scholar]
  10. Eisenbach G. M., Steinhausen M. Micropuncture studies after temporary ischemia of rat kidneys. Pflugers Arch. 1973;343(1):11–25. doi: 10.1007/BF00586571. [DOI] [PubMed] [Google Scholar]
  11. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993 Dec;123(6 Pt 2):1777–1788. doi: 10.1083/jcb.123.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Furuse M., Itoh M., Hirase T., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol. 1994 Dec;127(6 Pt 1):1617–1626. doi: 10.1083/jcb.127.6.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goligorsky M. S., Lieberthal W., Racusen L., Simon E. E. Integrin receptors in renal tubular epithelium: new insights into pathophysiology of acute renal failure. Am J Physiol. 1993 Jan;264(1 Pt 2):F1–F8. doi: 10.1152/ajprenal.1993.264.1.F1. [DOI] [PubMed] [Google Scholar]
  14. Granath K. A., Kvist B. E. Molecular weight distribution analysis by gel chromatography on Sephadex. J Chromatogr. 1967 May;28(1):69–81. doi: 10.1016/s0021-9673(01)85930-6. [DOI] [PubMed] [Google Scholar]
  15. Gumbiner B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996 Feb 9;84(3):345–357. doi: 10.1016/s0092-8674(00)81279-9. [DOI] [PubMed] [Google Scholar]
  16. Hanley M. J., Davidson K. Prior mannitol and furosemide infusion in a model of ischemic acute renal failure. Am J Physiol. 1981 Nov;241(5):F556–F564. doi: 10.1152/ajprenal.1981.241.5.F556. [DOI] [PubMed] [Google Scholar]
  17. Jones D. B. Ultrastructure of human acute renal failure. Lab Invest. 1982 Mar;46(3):254–264. [PubMed] [Google Scholar]
  18. Lieberthal W., McKenney J. B., Kiefer C. R., Snyder L. M., Kroshian V. M., Sjaastad M. D. Beta1 integrin-mediated adhesion between renal tubular cells after anoxic injury. J Am Soc Nephrol. 1997 Feb;8(2):175–183. doi: 10.1681/ASN.V82175. [DOI] [PubMed] [Google Scholar]
  19. Mandel L. J., Bacallao R., Zampighi G. Uncoupling of the molecular 'fence' and paracellular 'gate' functions in epithelial tight junctions. Nature. 1993 Feb 11;361(6412):552–555. doi: 10.1038/361552a0. [DOI] [PubMed] [Google Scholar]
  20. Molitoris B. A., Falk S. A., Dahl R. H. Ischemia-induced loss of epithelial polarity. Role of the tight junction. J Clin Invest. 1989 Oct;84(4):1334–1339. doi: 10.1172/JCI114302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Molitoris B. A. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol. 1991 Jun;260(6 Pt 2):F769–F778. doi: 10.1152/ajprenal.1991.260.6.F769. [DOI] [PubMed] [Google Scholar]
  22. Moran S. M., Myers B. D. Pathophysiology of protracted acute renal failure in man. J Clin Invest. 1985 Oct;76(4):1440–1448. doi: 10.1172/JCI112122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Myers B. D., Carrie B. J., Yee R. R., Hilberman M., Michaels A. S. Pathophysiology of hemodynamically mediated acute renal failure in man. Kidney Int. 1980 Oct;18(4):495–504. doi: 10.1038/ki.1980.163. [DOI] [PubMed] [Google Scholar]
  24. Myers B. D., Chui F., Hilberman M., Michaels A. S. Transtubular leakage of glomerular filtrate in human acute renal failure. Am J Physiol. 1979 Oct;237(4):F319–F325. doi: 10.1152/ajprenal.1979.237.4.F319. [DOI] [PubMed] [Google Scholar]
  25. Myers B. D., Miller D. C., Mehigan J. T., Olcott C. O., 4th, Golbetz H., Robertson C. R., Derby G., Spencer R., Friedman S. Nature of the renal injury following total renal ischemia in man. J Clin Invest. 1984 Feb;73(2):329–341. doi: 10.1172/JCI111217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Noiri E., Romanov V., Forest T., Gailit J., DiBona G. F., Miller F., Som P., Oster Z. H., Goligorsky M. S. Pathophysiology of renal tubular obstruction: therapeutic role of synthetic RGD peptides in acute renal failure. Kidney Int. 1995 Nov;48(5):1375–1385. doi: 10.1038/ki.1995.426. [DOI] [PubMed] [Google Scholar]
  28. Olsen T. S., Olsen H. S., Hansen H. E. Tubular ultrastructure in acute renal failure in man: epithelial necrosis and regeneration. Virchows Arch A Pathol Anat Histopathol. 1985;406(1):75–89. doi: 10.1007/BF00710559. [DOI] [PubMed] [Google Scholar]
  29. Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989 Jun;8(6):1711–1717. doi: 10.1002/j.1460-2075.1989.tb03563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Piepenhagen P. A., Nelson W. J. Differential expression of cell-cell and cell-substratum adhesion proteins along the kidney nephron. Am J Physiol. 1995 Dec;269(6 Pt 1):C1433–C1449. doi: 10.1152/ajpcell.1995.269.6.C1433. [DOI] [PubMed] [Google Scholar]
  31. Solez K., Morel-Maroger L., Sraer J. D. The morphology of "acute tubular necrosis" in man: analysis of 57 renal biopsies and a comparison with the glycerol model. Medicine (Baltimore) 1979 Sep;58(5):362–376. [PubMed] [Google Scholar]
  32. Solez K. Pathogenesis of acute renal failure. Int Rev Exp Pathol. 1983;24:277–333. [PubMed] [Google Scholar]
  33. Solez K., Racusen L. C., Marcussen N., Slatnik I., Keown P., Burdick J. F., Olsen S. Morphology of ischemic acute renal failure, normal function, and cyclosporine toxicity in cyclosporine-treated renal allograft recipients. Kidney Int. 1993 May;43(5):1058–1067. doi: 10.1038/ki.1993.148. [DOI] [PubMed] [Google Scholar]
  34. Sonnenberg A., Daams H., Van der Valk M. A., Hilkens J., Hilgers J. Development of mouse mammary gland: identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J Histochem Cytochem. 1986 Aug;34(8):1037–1046. doi: 10.1177/34.8.2426332. [DOI] [PubMed] [Google Scholar]
  35. Tanner G. A., Sophasan S. Kidney pressures after temporary renal artery occlusion in the rat. Am J Physiol. 1976 Apr;230(4):1173–1181. doi: 10.1152/ajplegacy.1976.230.4.1173. [DOI] [PubMed] [Google Scholar]
  36. Yagil Y., Myers B. D., Jamison R. L. Course and pathogenesis of postischemic acute renal failure in the rat. Am J Physiol. 1988 Aug;255(2 Pt 2):F257–F264. doi: 10.1152/ajprenal.1988.255.2.F257. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES