Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2072–2079. doi: 10.1172/JCI1042

Na-K-2Cl cotransporter gene expression and function during enterocyte differentiation. Modulation of Cl- secretory capacity by butyrate.

J B Matthews 1, I Hassan 1, S Meng 1, S Y Archer 1, B J Hrnjez 1, R A Hodin 1
PMCID: PMC508795  PMID: 9593763

Abstract

The basolateral Na-K-2Cl cotransporter (NKCC1) is a key component of the intestinal crypt cell secretory apparatus. Its fate during the transition to absorptive enterocyte and the potential impact of its altered expression on secretory output have not been addressed. In this report, NKCC1 mRNA was found to be expressed in rat jejunal crypt but not villus cells. Butyrate treatment of intestinal epithelial HT29 cells induced a differentiation pattern that recapitulated the rat intestinal crypt-villus axis, with NKCC1 mRNA levels decreasing in a time- and dose-dependent fashion in parallel with upregulation of apical brush-border markers. Butyrate but not acetate or proprionate decreased basal and cAMP-stimulated bumetanide-sensitive K+ (86Rb) uptake in both HT29 cells and the Cl--secreting T84 line. Butyrate markedly decreased transepithelial Cl- secretion in confluent T84 monolayers without effect on cAMP-regulated apical Cl- efflux. We conclude that NKCC1 regulation during enterocyte differentiation occurs at the level of gene expression, and that selective downregulation of NKCC1 gene expression and function by butyrate leads to a profound decrease in transepithelial Cl- secretion. These data emphasize the importance of NKCC1 in determining epithelial secretory capacity and suggest the possibility of modulation of the enterocytic transport phenotype as therapy for diarrheal disorders.

Full Text

The Full Text of this article is available as a PDF (230.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Augeron C., Laboisse C. L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 1984 Sep;44(9):3961–3969. [PubMed] [Google Scholar]
  2. Barnard J. A., Warwick G. Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ. 1993 Jun;4(6):495–501. [PubMed] [Google Scholar]
  3. Birren B. W., Herschman H. R. Regulation of the rat metallothionein-I gene by sodium butyrate. Nucleic Acids Res. 1986 Jan 24;14(2):853–867. doi: 10.1093/nar/14.2.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buchwald M., Sood R., Auerbach W. Regulation of expression of CFTR in human intestinal epithelial cells. Adv Exp Med Biol. 1991;290:241–252. doi: 10.1007/978-1-4684-5934-0_24. [DOI] [PubMed] [Google Scholar]
  5. Büller H. A., Kothe M. J., Goldman D. A., Grubman S. A., Sasak W. V., Matsudaira P. T., Montgomery R. K., Grand R. J. Coordinate expression of lactase-phlorizin hydrolase mRNA and enzyme levels in rat intestine during development. J Biol Chem. 1990 Apr 25;265(12):6978–6983. [PubMed] [Google Scholar]
  6. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  7. Dagher P. C., Egnor R. W., Taglietta-Kohlbrecher A., Charney A. N. Short-chain fatty acids inhibit cAMP-mediated chloride secretion in rat colon. Am J Physiol. 1996 Dec;271(6 Pt 1):C1853–C1860. doi: 10.1152/ajpcell.1996.271.6.C1853. [DOI] [PubMed] [Google Scholar]
  8. Dharmsathaphorn K., Madara J. L. Established intestinal cell lines as model systems for electrolyte transport studies. Methods Enzymol. 1990;192:354–389. doi: 10.1016/0076-6879(90)92082-o. [DOI] [PubMed] [Google Scholar]
  9. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  10. Fuller C. M., Benos D. J. CFTR! Am J Physiol. 1992 Aug;263(2 Pt 1):C267–C286. doi: 10.1152/ajpcell.1992.263.2.C267. [DOI] [PubMed] [Google Scholar]
  11. Gamba G., Miyanoshita A., Lombardi M., Lytton J., Lee W. S., Hediger M. A., Hebert S. C. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium-(potassium)-chloride cotransporter family expressed in kidney. J Biol Chem. 1994 Jul 1;269(26):17713–17722. [PubMed] [Google Scholar]
  12. Giannella R. A., Orlowski J., Jump M. L., Lingrel J. B. Na(+)-K(+)-ATPase gene expression in rat intestine and Caco-2 cells: response to thyroid hormone. Am J Physiol. 1993 Oct;265(4 Pt 1):G775–G782. doi: 10.1152/ajpgi.1993.265.4.G775. [DOI] [PubMed] [Google Scholar]
  13. Gordon J. I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol. 1989 Apr;108(4):1187–1194. doi: 10.1083/jcb.108.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haas M., McBrayer D. G. Na-K-Cl cotransport in nystatin-treated tracheal cells: regulation by isoproterenol, apical UTP, and [Cl]i. Am J Physiol. 1994 May;266(5 Pt 1):C1440–C1452. doi: 10.1152/ajpcell.1994.266.5.C1440. [DOI] [PubMed] [Google Scholar]
  15. Haas M. The Na-K-Cl cotransporters. Am J Physiol. 1994 Oct;267(4 Pt 1):C869–C885. doi: 10.1152/ajpcell.1994.267.4.C869. [DOI] [PubMed] [Google Scholar]
  16. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hodin R. A., Chamberlain S. M., Meng S. Pattern of rat intestinal brush-border enzyme gene expression changes with epithelial growth state. Am J Physiol. 1995 Aug;269(2 Pt 1):C385–C391. doi: 10.1152/ajpcell.1995.269.2.C385. [DOI] [PubMed] [Google Scholar]
  18. Hodin R. A., Meng S., Archer S., Tang R. Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ. 1996 May;7(5):647–653. [PubMed] [Google Scholar]
  19. Kim H. D., Tsai Y. S., Franklin C. C., Turner J. T. Characterization of Na+/K+/Cl- cotransport in cultured HT29 human colonic adenocarcinoma cells. Biochim Biophys Acta. 1988 Dec 22;946(2):397–404. doi: 10.1016/0005-2736(88)90415-4. [DOI] [PubMed] [Google Scholar]
  20. Matthews J. B., Awtrey C. S., Madara J. L. Microfilament-dependent activation of Na+/K+/2Cl- cotransport by cAMP in intestinal epithelial monolayers. J Clin Invest. 1992 Oct;90(4):1608–1613. doi: 10.1172/JCI116030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matthews J. B., Awtrey C. S., Thompson R., Hung T., Tally K. J., Madara J. L. Na(+)-K(+)-2Cl- cotransport and Cl- secretion evoked by heat-stable enterotoxin is microfilament dependent in T84 cells. Am J Physiol. 1993 Aug;265(2 Pt 1):G370–G378. doi: 10.1152/ajpgi.1993.265.2.G370. [DOI] [PubMed] [Google Scholar]
  22. Matthews J. B., Smith J. A., Hrnjez B. J. Effects of F-actin stabilization or disassembly on epithelial Cl- secretion and Na-K-2Cl cotransport. Am J Physiol. 1997 Jan;272(1 Pt 1):C254–C262. doi: 10.1152/ajpcell.1997.272.1.C254. [DOI] [PubMed] [Google Scholar]
  23. Matthews J. B., Smith J. A., Nguyen H. Modulation of intestinal chloride secretion at basolateral transport sites: opposing effects of cyclic adenosine monophosphate and phorbol ester. Surgery. 1995 Aug;118(2):147–153. doi: 10.1016/s0039-6060(05)80317-4. [DOI] [PubMed] [Google Scholar]
  24. Matthews J. B., Smith J. A., Tally K. J., Awtrey C. S., Nguyen H., Rich J., Madara J. L. Na-K-2Cl cotransport in intestinal epithelial cells. Influence of chloride efflux and F-actin on regulation of cotransporter activity and bumetanide binding. J Biol Chem. 1994 Jun 3;269(22):15703–15709. [PubMed] [Google Scholar]
  25. McIntyre A., Young G. P., Taranto T., Gibson P. R., Ward P. B. Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology. 1991 Nov;101(5):1274–1281. doi: 10.1016/0016-5085(91)90077-x. [DOI] [PubMed] [Google Scholar]
  26. Montrose-Rafizadeh C., Blackmon D. L., Hamosh A., Oliva M. M., Hawkins A. L., Curristin S. M., Griffin C. A., Yang V. W., Guggino W. B., Cutting G. R. Regulation of cystic fibrosis transmembrane conductance regulator (CFTR) gene transcription and alternative RNA splicing in a model of developing intestinal epithelium. J Biol Chem. 1992 Sep 25;267(27):19299–19305. [PubMed] [Google Scholar]
  27. Montrose-Rafizadeh C., Guggino W. B., Montrose M. H. Cellular differentiation regulates expression of Cl- transport and cystic fibrosis transmembrane conductance regulator mRNA in human intestinal cells. J Biol Chem. 1991 Mar 5;266(7):4495–4499. [PubMed] [Google Scholar]
  28. Morris A. P., Cunningham S. A., Benos D. J., Frizzell R. A. Cellular differentiation is required for cAMP but not Ca(2+)-dependent Cl- secretion in colonic epithelial cells expressing high levels of cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 Mar 15;267(8):5575–5583. [PubMed] [Google Scholar]
  29. Ouellette A. J., Lualdi J. C. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin. J Biol Chem. 1990 Jun 15;265(17):9831–9837. [PubMed] [Google Scholar]
  30. Payne J. A., Forbush B., 3rd Molecular characterization of the epithelial Na-K-Cl cotransporter isoforms. Curr Opin Cell Biol. 1995 Aug;7(4):493–503. doi: 10.1016/0955-0674(95)80005-0. [DOI] [PubMed] [Google Scholar]
  31. Payne J. A., Xu J. C., Haas M., Lytle C. Y., Ward D., Forbush B., 3rd Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem. 1995 Jul 28;270(30):17977–17985. doi: 10.1074/jbc.270.30.17977. [DOI] [PubMed] [Google Scholar]
  32. Pringault E., Arpin M., Garcia A., Finidori J., Louvard D. A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J. 1986 Dec 1;5(12):3119–3124. doi: 10.1002/j.1460-2075.1986.tb04618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  34. Rius C., Cabañas C., Aller P. The induction of vimentin gene expression by sodium butyrate in human promonocytic leukemia U937 cells. Exp Cell Res. 1990 May;188(1):129–134. doi: 10.1016/0014-4827(90)90287-k. [DOI] [PubMed] [Google Scholar]
  35. Sood R., Bear C., Auerbach W., Reyes E., Jensen T., Kartner N., Riordan J. R., Buchwald M. Regulation of CFTR expression and function during differentiation of intestinal epithelial cells. EMBO J. 1992 Jul;11(7):2487–2494. doi: 10.1002/j.1460-2075.1992.tb05313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Strong T. V., Boehm K., Collins F. S. Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest. 1994 Jan;93(1):347–354. doi: 10.1172/JCI116966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Traber P. G., Yu L., Wu G. D., Judge T. A. Sucrase-isomaltase gene expression along crypt-villus axis of human small intestine is regulated at level of mRNA abundance. Am J Physiol. 1992 Jan;262(1 Pt 1):G123–G130. doi: 10.1152/ajpgi.1992.262.1.G123. [DOI] [PubMed] [Google Scholar]
  38. Turner J. T., Franklin C. C., Bollinger D. W., Kim H. D. Vasoactive intestinal peptide stimulates active K+ transport and Na(+)-K(+)-Cl- cotransport in HT-29 cells. Am J Physiol. 1990 Feb;258(2 Pt 1):C266–C273. doi: 10.1152/ajpcell.1990.258.2.C266. [DOI] [PubMed] [Google Scholar]
  39. Venglarik C. J., Bridges R. J., Frizzell R. A. A simple assay for agonist-regulated Cl and K conductances in salt-secreting epithelial cells. Am J Physiol. 1990 Aug;259(2 Pt 1):C358–C364. doi: 10.1152/ajpcell.1990.259.2.C358. [DOI] [PubMed] [Google Scholar]
  40. Voisin T., Rouyer-Fessard C., Laburthe M. Distribution of common peptide YY-neuropeptide Y receptor along rat intestinal villus-crypt axis. Am J Physiol. 1990 May;258(5 Pt 1):G753–G759. doi: 10.1152/ajpgi.1990.258.5.G753. [DOI] [PubMed] [Google Scholar]
  41. Welsh M. J., Smith P. L., Fromm M., Frizzell R. A. Crypts are the site of intestinal fluid and electrolyte secretion. Science. 1982 Dec 17;218(4578):1219–1221. doi: 10.1126/science.6293054. [DOI] [PubMed] [Google Scholar]
  42. Xu J. C., Lytle C., Zhu T. T., Payne J. A., Benz E., Jr, Forbush B., 3rd Molecular cloning and functional expression of the bumetanide-sensitive Na-K-Cl cotransporter. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2201–2205. doi: 10.1073/pnas.91.6.2201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhou L., Dey C. R., Wert S. E., DuVall M. D., Frizzell R. A., Whitsett J. A. Correction of lethal intestinal defect in a mouse model of cystic fibrosis by human CFTR. Science. 1994 Dec 9;266(5191):1705–1708. doi: 10.1126/science.7527588. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES