Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2092–2100. doi: 10.1172/JCI1680

Endotoxin downregulates rat hepatic ntcp gene expression via decreased activity of critical transcription factors.

M Trauner 1, M Arrese 1, H Lee 1, J L Boyer 1, S J Karpen 1
PMCID: PMC508797  PMID: 9593765

Abstract

Sodium-dependent uptake of bile acids across the hepatic basolateral membrane is rapidly and profoundly diminished during sepsis, thus contributing to the pathogenesis of sepsis-associated cholestasis. This effect is mediated by endotoxin or effector cytokines, which reduce expression of several hepatobiliary transporters, including the sodium-dependent bile acid transporter gene, ntcp. We test here the hypothesis that endotoxin treatment leads to impaired binding activity of ntcp promoter trans-acting factors, resulting in reduction of ntcp mRNA expression. After endotoxin administration, ntcp mRNA levels reached their nadir by 16 h, and nuclear run-on assays demonstrated a marked reduction in ntcp gene transcription. At 16 h after treatment, nuclear binding activities of two key factors that transactivate the ntcp promoter, hepatocyte nuclear factor (HNF) 1 and Footprint B binding protein (FpB BP), decreased to 44 and 47% of pretreatment levels, respectively, while levels of the other known ntcp promoter transactivator, signal transducer and activator of transcription 5, were unaffected. In contrast, the universal inflammatory response factors nuclear factor kappaB and activating protein 1 were both upregulated significantly. Examination of nuclear extracts obtained at sequential time points revealed that the maximal decrease in nuclear activities of both HNF1 and FpB BP preceded the nadir of ntcp mRNA expression by 6-10 h. Furthermore, these two nuclear factors returned towards normal levels before the recovery of ntcp mRNA levels observed by 48 h. Since HNF1alpha mRNA levels were unchanged at all time points, HNF1 is likely to be regulated posttranscriptionally by endotoxin. We conclude that the downregulation of ntcp gene expression by endotoxin is mediated at the level of transcription through tandem reductions in the nuclear binding activity of two critical transcription factors. These findings provide new insight into the coordinated downregulation of hepatobiliary transporters during sepsis.

Full Text

The Full Text of this article is available as a PDF (360.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananthanarayanan M., Ng O. C., Boyer J. L., Suchy F. J. Characterization of cloned rat liver Na(+)-bile acid cotransporter using peptide and fusion protein antibodies. Am J Physiol. 1994 Oct;267(4 Pt 1):G637–G643. doi: 10.1152/ajpgi.1994.267.4.G637. [DOI] [PubMed] [Google Scholar]
  2. Andus T., Bauer J., Gerok W. Effects of cytokines on the liver. Hepatology. 1991 Feb;13(2):364–375. [PubMed] [Google Scholar]
  3. Banerjee R., Karpen S., Siekevitz M., Lengyel G., Bauer J., Acs G. Tumor necrosis factor-alpha induces a kappa B sequence-specific DNA-binding protein in human hepatoblastoma HepG2 cells. Hepatology. 1989 Dec;10(6):1008–1013. doi: 10.1002/hep.1840100620. [DOI] [PubMed] [Google Scholar]
  4. Barnes P. J., Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997 Apr 10;336(15):1066–1071. doi: 10.1056/NEJM199704103361506. [DOI] [PubMed] [Google Scholar]
  5. Baumann H., Gauldie J. The acute phase response. Immunol Today. 1994 Feb;15(2):74–80. doi: 10.1016/0167-5699(94)90137-6. [DOI] [PubMed] [Google Scholar]
  6. Baumhueter S., Mendel D. B., Conley P. B., Kuo C. J., Turk C., Graves M. K., Edwards C. A., Courtois G., Crabtree G. R. HNF-1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF. Genes Dev. 1990 Mar;4(3):372–379. doi: 10.1101/gad.4.3.372. [DOI] [PubMed] [Google Scholar]
  7. Blumenfeld M., Maury M., Chouard T., Yaniv M., Condamine H. Hepatic nuclear factor 1 (HNF1) shows a wider distribution than products of its known target genes in developing mouse. Development. 1991 Oct;113(2):589–599. doi: 10.1242/dev.113.2.589. [DOI] [PubMed] [Google Scholar]
  8. Bolder U., Ton-Nu H. T., Schteingart C. D., Frick E., Hofmann A. F. Hepatocyte transport of bile acids and organic anions in endotoxemic rats: impaired uptake and secretion. Gastroenterology. 1997 Jan;112(1):214–225. doi: 10.1016/s0016-5085(97)70238-5. [DOI] [PubMed] [Google Scholar]
  9. Boyer J. L., Phillips J. M., Graf J. Preparation and specific applications of isolated hepatocyte couplets. Methods Enzymol. 1990;192:501–516. doi: 10.1016/0076-6879(90)92090-z. [DOI] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  11. Brenner D. A., Buck M., Feitelberg S. P., Chojkier M. Tumor necrosis factor-alpha inhibits albumin gene expression in a murine model of cachexia. J Clin Invest. 1990 Jan;85(1):248–255. doi: 10.1172/JCI114419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  13. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  14. Deutschman C. S., Haber B. A., Andrejko K., Cressman D. E., Harrison R., Elenko E., Taub R. Increased expression of cytokine-induced neutrophil chemoattractant in septic rat liver. Am J Physiol. 1996 Sep;271(3 Pt 2):R593–R600. doi: 10.1152/ajpregu.1996.271.3.R593. [DOI] [PubMed] [Google Scholar]
  15. Ganguly T. C., O'Brien M. L., Karpen S. J., Hyde J. F., Suchy F. J., Vore M. Regulation of the rat liver sodium-dependent bile acid cotransporter gene by prolactin. Mediation of transcriptional activation by Stat5. J Clin Invest. 1997 Jun 15;99(12):2906–2914. doi: 10.1172/JCI119485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gartung C., Ananthanarayanan M., Rahman M. A., Schuele S., Nundy S., Soroka C. J., Stolz A., Suchy F. J., Boyer J. L. Down-regulation of expression and function of the rat liver Na+/bile acid cotransporter in extrahepatic cholestasis. Gastroenterology. 1996 Jan;110(1):199–209. doi: 10.1053/gast.1996.v110.pm8536857. [DOI] [PubMed] [Google Scholar]
  17. Gartung C., Schuele S., Schlosser S. F., Boyer J. L. Expression of the rat liver Na+/taurocholate cotransporter is regulated in vivo by retention of biliary constituents but not their depletion. Hepatology. 1997 Feb;25(2):284–290. doi: 10.1002/hep.510250205. [DOI] [PubMed] [Google Scholar]
  18. Green R. M., Beier D., Gollan J. L. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology. 1996 Jul;111(1):193–198. doi: 10.1053/gast.1996.v111.pm8698199. [DOI] [PubMed] [Google Scholar]
  19. Green R. M., Whiting J. F., Rosenbluth A. B., Beier D., Gollan J. L. Interleukin-6 inhibits hepatocyte taurocholate uptake and sodium-potassium-adenosinetriphosphatase activity. Am J Physiol. 1994 Dec;267(6 Pt 1):G1094–G1100. doi: 10.1152/ajpgi.1994.267.6.G1094. [DOI] [PubMed] [Google Scholar]
  20. HAMILTON J. R., SASS-KORTSAK A. Jaundice associated with severe bacterial infection in young infants. J Pediatr. 1963 Jul;63:121–132. doi: 10.1016/s0022-3476(63)80310-8. [DOI] [PubMed] [Google Scholar]
  21. Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Herschman H. R. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem. 1991;60:281–319. doi: 10.1146/annurev.bi.60.070191.001433. [DOI] [PubMed] [Google Scholar]
  23. Hoffmann R., Grewe M., Estler H. C., Schulze-Specking A., Decker K. Regulation of tumor necrosis factor-alpha-mRNA synthesis and distribution of tumor necrosis factor-alpha-mRNA synthesizing cells in rat liver during experimental endotoxemia. J Hepatol. 1994 Jan;20(1):122–128. doi: 10.1016/s0168-8278(05)80478-7. [DOI] [PubMed] [Google Scholar]
  24. Hu J., Isom H. C. Suppression of albumin enhancer activity by H-ras and AP-1 in hepatocyte cell lines. Mol Cell Biol. 1994 Mar;14(3):1531–1543. doi: 10.1128/mcb.14.3.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jang S. I., Steinert P. M., Markova N. G. Activator protein 1 activity is involved in the regulation of the cell type-specific expression from the proximal promoter of the human profilaggrin gene. J Biol Chem. 1996 Sep 27;271(39):24105–24114. doi: 10.1074/jbc.271.39.24105. [DOI] [PubMed] [Google Scholar]
  26. Jaundice due to bacterial infection. Gastroenterology. 1979 Aug;77(2):362–374. [PubMed] [Google Scholar]
  27. Jones A., Selby P. J., Viner C., Hobbs S., Gore M. E., McElwain T. J. Tumour necrosis factor, cholestatic jaundice, and chronic liver disease. Gut. 1990 Aug;31(8):938–939. doi: 10.1136/gut.31.8.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Karpen S. J., Sun A. Q., Kudish B., Hagenbuch B., Meier P. J., Ananthanarayanan M., Suchy F. J. Multiple factors regulate the rat liver basolateral sodium-dependent bile acid cotransporter gene promoter. J Biol Chem. 1996 Jun 21;271(25):15211–15221. doi: 10.1074/jbc.271.25.15211. [DOI] [PubMed] [Google Scholar]
  29. Meier P. J. Molecular mechanisms of hepatic bile salt transport from sinusoidal blood into bile. Am J Physiol. 1995 Dec;269(6 Pt 1):G801–G812. doi: 10.1152/ajpgi.1995.269.6.G801. [DOI] [PubMed] [Google Scholar]
  30. Mentes B. B., Tatlicioglu E., Akyol G., Uluoglu O., Sultan N., Yilmaz E., Celebi M., Taneri F., Ferahkose Z. Intestinal endotoxins as co-factors of liver injury in obstructive jaundice. HPB Surg. 1996;9(2):61–69. doi: 10.1155/1996/75037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moseley R. H. Sepsis-associated cholestasis. Gastroenterology. 1997 Jan;112(1):302–306. doi: 10.1016/s0016-5085(97)70250-6. [DOI] [PubMed] [Google Scholar]
  32. Moseley R. H., Wang W., Takeda H., Lown K., Shick L., Ananthanarayanan M., Suchy F. J. Effect of endotoxin on bile acid transport in rat liver: a potential model for sepsis-associated cholestasis. Am J Physiol. 1996 Jul;271(1 Pt 1):G137–G146. doi: 10.1152/ajpgi.1996.271.1.G137. [DOI] [PubMed] [Google Scholar]
  33. Moshage H. Cytokines and the hepatic acute phase response. J Pathol. 1997 Mar;181(3):257–266. doi: 10.1002/(SICI)1096-9896(199703)181:3<257::AID-PATH756>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  34. Nolan J. P. Intestinal endotoxins as mediators of hepatic injury--an idea whose time has come again. Hepatology. 1989 Nov;10(5):887–891. doi: 10.1002/hep.1840100523. [DOI] [PubMed] [Google Scholar]
  35. Perlmutter D. H., Dinarello C. A., Punsal P. I., Colten H. R. Cachectin/tumor necrosis factor regulates hepatic acute-phase gene expression. J Clin Invest. 1986 Nov;78(5):1349–1354. doi: 10.1172/JCI112721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Perlmutter D. H., Goldberger G., Dinarello C. A., Mizel S. B., Colten H. R. Regulation of class III major histocompatibility complex gene products by interleukin-1. Science. 1986 May 16;232(4752):850–852. doi: 10.1126/science.3010455. [DOI] [PubMed] [Google Scholar]
  37. Pirovino M., Meister F., Rubli E., Karlaganis G. Preserved cytosolic and synthetic liver function in jaundice of severe extrahepatic infection. Gastroenterology. 1989 Jun;96(6):1589–1595. doi: 10.1016/0016-5085(89)90531-3. [DOI] [PubMed] [Google Scholar]
  38. Pontoglio M., Barra J., Hadchouel M., Doyen A., Kress C., Bach J. P., Babinet C., Yaniv M. Hepatocyte nuclear factor 1 inactivation results in hepatic dysfunction, phenylketonuria, and renal Fanconi syndrome. Cell. 1996 Feb 23;84(4):575–585. doi: 10.1016/s0092-8674(00)81033-8. [DOI] [PubMed] [Google Scholar]
  39. Ram P. A., Park S. H., Choi H. K., Waxman D. J. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem. 1996 Mar 8;271(10):5929–5940. doi: 10.1074/jbc.271.10.5929. [DOI] [PubMed] [Google Scholar]
  40. Ripperger J. A., Fritz S., Richter K., Hocke G. M., Lottspeich F., Fey G. H. Transcription factors Stat3 and Stat5b are present in rat liver nuclei late in an acute phase response and bind interleukin-6 response elements. J Biol Chem. 1995 Dec 15;270(50):29998–30006. doi: 10.1074/jbc.270.50.29998. [DOI] [PubMed] [Google Scholar]
  41. Roelofsen H., Schoemaker B., Bakker C., Ottenhoff R., Jansen P. L., Elferink R. P. Impaired hepatocanalicular organic anion transport in endotoxemic rats. Am J Physiol. 1995 Sep;269(3 Pt 1):G427–G434. doi: 10.1152/ajpgi.1995.269.3.G427. [DOI] [PubMed] [Google Scholar]
  42. Roelofsen H., van der Veere C. N., Ottenhoff R., Schoemaker B., Jansen P. L., Oude Elferink R. P. Decreased bilirubin transport in the perfused liver of endotoxemic rats. Gastroenterology. 1994 Oct;107(4):1075–1084. doi: 10.1016/0016-5085(94)90232-1. [DOI] [PubMed] [Google Scholar]
  43. Rollier A., DiPersio C. M., Cereghini S., Stevens K., Tronche F., Zaret K., Weiss M. C. Regulation of albumin gene expression in hepatoma cells of fetal phenotype: dominant inhibition of HNF1 function and role of ubiquitous transcription factors. Mol Biol Cell. 1993 Jan;4(1):59–69. doi: 10.1091/mbc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rustgi V. K., Jones D. B., Dinarello C. A., Hoofnagle J. H. Lymphokines and bile secretion in the rat. Liver. 1987 Jun;7(3):149–154. doi: 10.1111/j.1600-0676.1987.tb00335.x. [DOI] [PubMed] [Google Scholar]
  45. Simon F. R., Fortune J., Iwahashi M., Gartung C., Wolkoff A., Sutherland E. Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters. Am J Physiol. 1996 Dec;271(6 Pt 1):G1043–G1052. doi: 10.1152/ajpgi.1996.271.6.G1043. [DOI] [PubMed] [Google Scholar]
  46. Srivastva K. K., Cable E. E., Bonkovsky H. L. Purifying nascent mRNA from nuclear run-on assays using guanidinium isothiocyanate. Biotechniques. 1993 Aug;15(2):226–227. [PubMed] [Google Scholar]
  47. Stroup D., Crestani M., Chiang J. Y. Identification of a bile acid response element in the cholesterol 7 alpha-hydroxylase gene CYP7A. Am J Physiol. 1997 Aug;273(2 Pt 1):G508–G517. doi: 10.1152/ajpgi.1997.273.2.G508. [DOI] [PubMed] [Google Scholar]
  48. Sugiyama K., Hitomi Y., Adachi H., Esumi H. Cell type specific patterns of mRNA splicing in hepatoma cells transfected with the mutated albumin minigene of Nagase analbuminemic rats. Cancer Lett. 1994 Aug 15;83(1-2):221–227. doi: 10.1016/0304-3835(94)90323-9. [DOI] [PubMed] [Google Scholar]
  49. Trauner M., Arrese M., Soroka C. J., Ananthanarayanan M., Koeppel T. A., Schlosser S. F., Suchy F. J., Keppler D., Boyer J. L. The rat canalicular conjugate export pump (Mrp2) is down-regulated in intrahepatic and obstructive cholestasis. Gastroenterology. 1997 Jul;113(1):255–264. doi: 10.1016/s0016-5085(97)70103-3. [DOI] [PubMed] [Google Scholar]
  50. Trauner M., Nathanson M. H., Rydberg S. A., Koeppel T. A., Gartung C., Sessa W. C., Boyer J. L. Endotoxin impairs biliary glutathione and HCO3- excretion and blocks the choleretic effect of nitric oxide in rat liver. Hepatology. 1997 May;25(5):1184–1191. doi: 10.1002/hep.510250522. [DOI] [PubMed] [Google Scholar]
  51. Utili R., Abernathy C. O., Zimmerman H. J. Cholestatic effects of Escherichia coli endotoxin endotoxin on the isolated perfused rat liver. Gastroenterology. 1976 Feb;70(2):248–253. [PubMed] [Google Scholar]
  52. Van Bossuyt H., Desmaretz C., Gaeta G. B., Wisse E. The role of bile acids in the development of endotoxemia during obstructive jaundice in the rat. J Hepatol. 1990 May;10(3):274–279. doi: 10.1016/0168-8278(90)90132-b. [DOI] [PubMed] [Google Scholar]
  53. Whiting J. F., Green R. M., Rosenbluth A. B., Gollan J. L. Tumor necrosis factor-alpha decreases hepatocyte bile salt uptake and mediates endotoxin-induced cholestasis. Hepatology. 1995 Oct;22(4 Pt 1):1273–1278. doi: 10.1016/0270-9139(95)90639-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES