Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2119–2128. doi: 10.1172/JCI1505

High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies.

L Lattanzi 1, G Salvatori 1, M Coletta 1, C Sonnino 1, M G Cusella De Angelis 1, L Gioglio 1, C E Murry 1, R Kelly 1, G Ferrari 1, M Molinaro 1, M Crescenzi 1, F Mavilio 1, G Cossu 1
PMCID: PMC508800  PMID: 9593768

Abstract

Ex vivo gene therapy of primary myopathies, based on autologous transplantation of genetically modified myogenic cells, is seriously limited by the number of primary myogenic cells that can be isolated, expanded, transduced, and reimplanted into the patient's muscles. We explored the possibility of using the MyoD gene to induce myogenic conversion of nonmuscle, primary cells in a quantitatively relevant fashion. Primary human and murine fibroblasts from skin, muscle, or bone marrow were infected by an E1-deleted adenoviral vector carrying a retroviral long terminal repeat-promoted MyoD cDNA. Expression of MyoD caused irreversible withdrawal from the cell cycle and myogenic differentiation in the majority (from 60 to 90%) of cultured fibroblasts, as defined by activation of muscle-specific genes, fusion into contractile myotubes, and appearance of ultrastructurally normal sarcomagenesis in culture. 24 h after adenoviral exposure, MyoD-converted cultures were injected into regenerating muscle of immunodeficient (severe combined immunodeficiency/beige) mice, where they gave rise to beta-galactosidase positive, centrally nucleated fibers expressing human myosin heavy chains. Fibers originating from converted fibroblasts were indistinguishable from those obtained by injection of control cultures of lacZ-transduced satellite cells. MyoD-converted murine fibroblasts participated to muscle regeneration also in immunocompetent, syngeneic mice. Although antibodies from these mice bound to adenoviral infected cells in vitro, no inflammatory infiltrate was present in the graft site throughout the 3-wk study period. These data support the feasibility of an alternative approach to gene therapy of primary myopathies, based on implantation of large numbers of genetically modified primary fibroblasts massively converted to myogenesis by adenoviral delivery of MyoD ex vivo.

Full Text

The Full Text of this article is available as a PDF (846.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bober E., Lyons G. E., Braun T., Cossu G., Buckingham M., Arnold H. H. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol. 1991 Jun;113(6):1255–1265. doi: 10.1083/jcb.113.6.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulter J., Luyten W., Evans K., Mason P., Ballivet M., Goldman D., Stengelin S., Martin G., Heinemann S., Patrick J. Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor. J Neurosci. 1985 Sep;5(9):2545–2552. doi: 10.1523/JNEUROSCI.05-09-02545.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breton M., Li Z. L., Paulin D., Harris J. A., Rieger F., Pinçon-Raymond M., Garcia L. Myotube driven myogenic recruitment of cells during in vitro myogenesis. Dev Dyn. 1995 Feb;202(2):126–136. doi: 10.1002/aja.1002020204. [DOI] [PubMed] [Google Scholar]
  5. Caplan A. I. Mesenchymal stem cells. J Orthop Res. 1991 Sep;9(5):641–650. doi: 10.1002/jor.1100090504. [DOI] [PubMed] [Google Scholar]
  6. Chen H. H., Mack L. M., Kelly R., Ontell M., Kochanek S., Clemens P. R. Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1645–1650. doi: 10.1073/pnas.94.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Cossu G., Tajbakhsh S., Buckingham M. How is myogenesis initiated in the embryo? Trends Genet. 1996 Jun;12(6):218–223. doi: 10.1016/0168-9525(96)10025-1. [DOI] [PubMed] [Google Scholar]
  9. Cossu G. Unorthodox myogenesis: possible developmental significance and implications for tissue histogenesis and regeneration. Histol Histopathol. 1997 Jul;12(3):755–760. [PubMed] [Google Scholar]
  10. Crescenzi M., Fleming T. P., Lassar A. B., Weintraub H., Aaronson S. A. MyoD induces growth arrest independent of differentiation in normal and transformed cells. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8442–8446. doi: 10.1073/pnas.87.21.8442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cusella-De Angelis M. G., Molinari S., Le Donne A., Coletta M., Vivarelli E., Bouche M., Molinaro M., Ferrari S., Cossu G. Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development. 1994 Apr;120(4):925–933. doi: 10.1242/dev.120.4.925. [DOI] [PubMed] [Google Scholar]
  12. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  13. Edom F., Mouly V., Barbet J. P., Fiszman M. Y., Butler-Browne G. S. Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev Biol. 1994 Jul;164(1):219–229. doi: 10.1006/dbio.1994.1193. [DOI] [PubMed] [Google Scholar]
  14. Gibson A. J., Karasinski J., Relvas J., Moss J., Sherratt T. G., Strong P. N., Watt D. J. Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. J Cell Sci. 1995 Jan;108(Pt 1):207–214. doi: 10.1242/jcs.108.1.207. [DOI] [PubMed] [Google Scholar]
  15. Grigoriadis A. E., Heersche J. N., Aubin J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol. 1988 Jun;106(6):2139–2151. doi: 10.1083/jcb.106.6.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guérette B., Skuk D., Célestin F., Huard C., Tardif F., Asselin I., Roy B., Goulet M., Roy R., Entman M. Prevention by anti-LFA-1 of acute myoblast death following transplantation. J Immunol. 1997 Sep 1;159(5):2522–2531. [PubMed] [Google Scholar]
  17. Haecker S. E., Stedman H. H., Balice-Gordon R. J., Smith D. B., Greelish J. P., Mitchell M. A., Wells A., Sweeney H. L., Wilson J. M. In vivo expression of full-length human dystrophin from adenoviral vectors deleted of all viral genes. Hum Gene Ther. 1996 Oct 1;7(15):1907–1914. doi: 10.1089/hum.1996.7.15-1907. [DOI] [PubMed] [Google Scholar]
  18. Huard J., Verreault S., Roy R., Tremblay M., Tremblay J. P. High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice. J Clin Invest. 1994 Feb;93(2):586–599. doi: 10.1172/JCI117011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kelly R., Alonso S., Tajbakhsh S., Cossu G., Buckingham M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol. 1995 Apr;129(2):383–396. doi: 10.1083/jcb.129.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kinoshita I., Roy R., Dugré F. J., Gravel C., Roy B., Goulet M., Asselin I., Tremblay J. P. Myoblast transplantation in monkeys: control of immune response by FK506. J Neuropathol Exp Neurol. 1996 Jun;55(6):687–697. doi: 10.1097/00005072-199606000-00002. [DOI] [PubMed] [Google Scholar]
  21. Lyons G. E., Mühlebach S., Moser A., Masood R., Paterson B. M., Buckingham M. E., Perriard J. C. Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development. 1991 Nov;113(3):1017–1029. doi: 10.1242/dev.113.3.1017. [DOI] [PubMed] [Google Scholar]
  22. Mouly V., Edom F., Decary S., Vicart P., Barbert J. P., Butler-Browne G. S. SV40 large T antigen interferes with adult myosin heavy chain expression, but not with differentiation of human satellite cells. Exp Cell Res. 1996 Jun 15;225(2):268–276. doi: 10.1006/excr.1996.0176. [DOI] [PubMed] [Google Scholar]
  23. Murry C. E., Kay M. A., Bartosek T., Hauschka S. D., Schwartz S. M. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest. 1996 Nov 15;98(10):2209–2217. doi: 10.1172/JCI119030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pegoraro E., Schimke R. N., Garcia C., Stern H., Cadaldini M., Angelini C., Barbosa E., Carroll J., Marks W. A., Neville H. E. Genetic and biochemical normalization in female carriers of Duchenne muscular dystrophy: evidence for failure of dystrophin production in dystrophin-competent myonuclei. Neurology. 1995 Apr;45(4):677–690. doi: 10.1212/wnl.45.4.677. [DOI] [PubMed] [Google Scholar]
  25. Salvatori G., Ferrari G., Mezzogiorno A., Servidei S., Coletta M., Tonali P., Giavazzi R., Cossu G., Mavilio F. Retroviral vector-mediated gene transfer into human primary myogenic cells leads to expression in muscle fibers in vivo. Hum Gene Ther. 1993 Dec;4(6):713–723. doi: 10.1089/hum.1993.4.6-713. [DOI] [PubMed] [Google Scholar]
  26. Salvatori G., Lattanzi L., Coletta M., Aguanno S., Vivarelli E., Kelly R., Ferrari G., Harris A. J., Mavilio F., Molinaro M. Myogenic conversion of mammalian fibroblasts induced by differentiating muscle cells. J Cell Sci. 1995 Aug;108(Pt 8):2733–2739. doi: 10.1242/jcs.108.8.2733. [DOI] [PubMed] [Google Scholar]
  27. Salvatori G., Lattanzi L., Puri P. L., Melchionna R., Fieri C., Levrero M., Molinaro M., Cossu G. A temperature-conditional mutant of simian virus 40 large T antigen requires serum to inhibit myogenesis and does not induce DNA synthesis in myotubes. Cell Growth Differ. 1997 Feb;8(2):157–164. [PubMed] [Google Scholar]
  28. Schiaffino S., Gorza L., Sartore S., Saggin L., Ausoni S., Vianello M., Gundersen K., Lømo T. Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil. 1989 Jun;10(3):197–205. doi: 10.1007/BF01739810. [DOI] [PubMed] [Google Scholar]
  29. Schultz E., Lipton B. H. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev. 1982 Dec;20(4):377–383. doi: 10.1016/0047-6374(82)90105-1. [DOI] [PubMed] [Google Scholar]
  30. Simon L. V., Beauchamp J. R., O'Hare M., Olsen I. Establishment of long-term myogenic cultures from patients with Duchenne muscular dystrophy by retroviral transduction of a temperature-sensitive SV40 large T antigen. Exp Cell Res. 1996 May 1;224(2):264–271. doi: 10.1006/excr.1996.0136. [DOI] [PubMed] [Google Scholar]
  31. Tajbakhsh S., Vivarelli E., Cusella-De Angelis G., Rocancourt D., Buckingham M., Cossu G. A population of myogenic cells derived from the mouse neural tube. Neuron. 1994 Oct;13(4):813–821. doi: 10.1016/0896-6273(94)90248-8. [DOI] [PubMed] [Google Scholar]
  32. Webster C., Blau H. M. Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet. 1990 Nov;16(6):557–565. doi: 10.1007/BF01233096. [DOI] [PubMed] [Google Scholar]
  33. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  34. Yang Y., Haecker S. E., Su Q., Wilson J. M. Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum Mol Genet. 1996 Nov;5(11):1703–1712. doi: 10.1093/hmg/5.11.1703. [DOI] [PubMed] [Google Scholar]
  35. Yasin R., Van Beers G., Nurse K. C., Al-Ani S., Landon D. N., Thompson E. J. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J Neurol Sci. 1977 Jul;32(3):347–360. doi: 10.1016/0022-510x(77)90018-1. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES