Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2151–2164. doi: 10.1172/JCI1599

Increased expression of apolipoprotein E in transgenic rabbits results in reduced levels of very low density lipoproteins and an accumulation of low density lipoproteins in plasma.

J Fan 1, Z S Ji 1, Y Huang 1, H de Silva 1, D Sanan 1, R W Mahley 1, T L Innerarity 1, J M Taylor 1
PMCID: PMC508803  PMID: 9593771

Abstract

Transgenic rabbits expressing human apo E3 were generated to investigate mechanisms by which apo E modulates plasma lipoprotein metabolism. Compared with nontransgenic littermates expressing approximately 3 mg/dl of endogenous rabbit apo E, male transgenic rabbits expressing approximately 13 mg/dl of human apo E had a 35% decrease in total plasma triglycerides that was due to a reduction in VLDL levels and an absence of large VLDL. With its greater content of apo E, transgenic VLDL had an increased binding affinity for the LDL receptor in vitro, and injected chylomicrons were cleared more rapidly by the liver in transgenic rabbits. In contrast to triglyceride changes, transgenic rabbits had a 70% increase in plasma cholesterol levels due to an accumulation of LDL and apo E-rich HDL. Transgenic and control LDL had the same binding affinity for the LDL receptor. Both transgenic and control rabbits had similar LDL receptor levels, but intravenously injected human LDL were cleared more slowly in transgenic rabbits than in controls. Changes in lipoprotein lipolysis did not contribute to the accumulation of LDL or the reduction in VLDL levels. These observations suggest that the increased content of apo E3 on triglyceride-rich remnant lipoproteins in transgenic rabbits confers a greater affinity for cell surface receptors, thereby increasing remnant clearance from plasma. The apo E-rich large remnants appear to compete more effectively than LDL for receptor-mediated binding and clearance, resulting in delayed clearance and the accumulation of LDL in plasma.

Full Text

The Full Text of this article is available as a PDF (570.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8342–8346. doi: 10.1073/pnas.88.19.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borensztajn J., Getz G. S., Kotlar T. J. Uptake of chylomicron remnants by the liver: further evidence for the modulating role of phospholipids. J Lipid Res. 1988 Aug;29(8):1087–1096. [PubMed] [Google Scholar]
  3. Choi S. Y., Fong L. G., Kirven M. J., Cooper A. D. Use of an anti-low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo. J Clin Invest. 1991 Oct;88(4):1173–1181. doi: 10.1172/JCI115419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Connelly P. W., Maguire G. F., Vezina C., Hegele R. A., Kuksis A. Kinetics of lipolysis of very low density lipoproteins by lipoprotein lipase. Importance of particle number and noncompetitive inhibition by particles with low triglyceride content. J Biol Chem. 1994 Aug 12;269(32):20554–20560. [PubMed] [Google Scholar]
  5. Das H. K., McPherson J., Bruns G. A., Karathanasis S. K., Breslow J. L. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J Biol Chem. 1985 May 25;260(10):6240–6247. [PubMed] [Google Scholar]
  6. Davignon J., Gregg R. E., Sing C. F. Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis. 1988 Jan-Feb;8(1):1–21. doi: 10.1161/01.atv.8.1.1. [DOI] [PubMed] [Google Scholar]
  7. Dong L. M., Weisgraber K. H. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem. 1996 Aug 9;271(32):19053–19057. doi: 10.1074/jbc.271.32.19053. [DOI] [PubMed] [Google Scholar]
  8. Eckel R. H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989 Apr 20;320(16):1060–1068. doi: 10.1056/NEJM198904203201607. [DOI] [PubMed] [Google Scholar]
  9. Elshourbagy N. A., Liao W. S., Mahley R. W., Taylor J. M. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A. 1985 Jan;82(1):203–207. doi: 10.1073/pnas.82.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fan J., Wang J., Bensadoun A., Lauer S. J., Dang Q., Mahley R. W., Taylor J. M. Overexpression of hepatic lipase in transgenic rabbits leads to a marked reduction of plasma high density lipoproteins and intermediate density lipoproteins. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8724–8728. doi: 10.1073/pnas.91.18.8724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greeve J., Altkemper I., Dieterich J. H., Greten H., Windler E. Apolipoprotein B mRNA editing in 12 different mammalian species: hepatic expression is reflected in low concentrations of apoB-containing plasma lipoproteins. J Lipid Res. 1993 Aug;34(8):1367–1383. [PubMed] [Google Scholar]
  12. Grundy S. M. George Lyman Duff Memorial Lecture. Multifactorial etiology of hypercholesterolemia. Implications for prevention of coronary heart disease. Arterioscler Thromb. 1991 Nov-Dec;11(6):1619–1635. doi: 10.1161/01.atv.11.6.1619. [DOI] [PubMed] [Google Scholar]
  13. Havel R. J., Kita T., Kotite L., Kane J. P., Hamilton R. L., Goldstein J. L., Brown M. S. Concentration and composition of lipoproteins in blood plasma of the WHHL rabbit. An animal model of human familial hypercholesterolemia. Arteriosclerosis. 1982 Nov-Dec;2(6):467–474. doi: 10.1161/01.atv.2.6.467. [DOI] [PubMed] [Google Scholar]
  14. Hennessy L. K., Kunitake S. T., Jarvis M., Hamilton R. L., Endeman G., Protter A., Kane J. P. Isolation of subpopulations of high density lipoproteins: three particle species containing apoE and two species devoid of apoE that have affinity for heparin. J Lipid Res. 1997 Sep;38(9):1859–1868. [PubMed] [Google Scholar]
  15. Herz J., Qiu S. Q., Oesterle A., DeSilva H. V., Shafi S., Havel R. J. Initial hepatic removal of chylomicron remnants is unaffected but endocytosis is delayed in mice lacking the low density lipoprotein receptor. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4611–4615. doi: 10.1073/pnas.92.10.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang Y., Schwendner S. W., Rall S. C., Jr, Sanan D. A., Mahley R. W. Apolipoprotein E2 transgenic rabbits. Modulation of the type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis. J Biol Chem. 1997 Sep 5;272(36):22685–22694. doi: 10.1074/jbc.272.36.22685. [DOI] [PubMed] [Google Scholar]
  17. Huettinger M., Schneider W. J., Ho Y. K., Goldstein J. L., Brown M. S. Use of monoclonal anti-receptor antibodies to probe the expression of the low density lipoprotein receptor in tissues of normal and Watanabe heritable hyperlipidemic rabbits. J Clin Invest. 1984 Sep;74(3):1017–1026. doi: 10.1172/JCI111469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hussain M. M., Innerarity T. L., Brecht W. J., Mahley R. W. Chylomicron metabolism in normal, cholesterol-fed, and Watanabe heritable hyperlipidemic rabbits. Saturation of the sequestration step of the remnant clearance pathway. J Biol Chem. 1995 Apr 14;270(15):8578–8587. doi: 10.1074/jbc.270.15.8578. [DOI] [PubMed] [Google Scholar]
  19. Hussain M. M., Mahley R. W., Boyles J. K., Fainaru M., Brecht W. J., Lindquist P. A. Chylomicron-chylomicron remnant clearance by liver and bone marrow in rabbits. Factors that modify tissue-specific uptake. J Biol Chem. 1989 Jun 5;264(16):9571–9582. [PubMed] [Google Scholar]
  20. Hussain M. M., Mahley R. W., Boyles J. K., Lindquist P. A., Brecht W. J., Innerarity T. L. Chylomicron metabolism. Chylomicron uptake by bone marrow in different animal species. J Biol Chem. 1989 Oct 25;264(30):17931–17938. [PubMed] [Google Scholar]
  21. Hussain M. M., Maxfield F. R., Más-Oliva J., Tabas I., Ji Z. S., Innerarity T. L., Mahley R. W. Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem. 1991 Jul 25;266(21):13936–13940. [PubMed] [Google Scholar]
  22. Innerarity T. L., Pitas R. E., Mahley R. W. Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts. J Biol Chem. 1979 May 25;254(10):4186–4190. [PubMed] [Google Scholar]
  23. Innerarity T. L., Pitas R. E., Mahley R. W. Receptor binding of cholesterol-induced high-density lipoproteins containing predominantly apoprotein E to cultured fibroblasts with mutations at the low-density lipoprotein receptor locus. Biochemistry. 1980 Sep 2;19(18):4359–4365. doi: 10.1021/bi00559a032. [DOI] [PubMed] [Google Scholar]
  24. Iverius P. H., Lindahl U., Egelrud T., Olivecrona T. Effects of heparin on lipoprotein lipase from bovine milk. J Biol Chem. 1972 Oct 25;247(20):6610–6616. [PubMed] [Google Scholar]
  25. Ji Z. S., Brecht W. J., Miranda R. D., Hussain M. M., Innerarity T. L., Mahley R. W. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J Biol Chem. 1993 May 15;268(14):10160–10167. [PubMed] [Google Scholar]
  26. Ji Z. S., Fazio S., Lee Y. L., Mahley R. W. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J Biol Chem. 1994 Jan 28;269(4):2764–2772. [PubMed] [Google Scholar]
  27. Ji Z. S., Lauer S. J., Fazio S., Bensadoun A., Taylor J. M., Mahley R. W. Enhanced binding and uptake of remnant lipoproteins by hepatic lipase-secreting hepatoma cells in culture. J Biol Chem. 1994 May 6;269(18):13429–13436. [PubMed] [Google Scholar]
  28. Ji Z. S., Sanan D. A., Mahley R. W. Intravenous heparinase inhibits remnant lipoprotein clearance from the plasma and uptake by the liver: in vivo role of heparan sulfate proteoglycans. J Lipid Res. 1995 Mar;36(3):583–592. [PubMed] [Google Scholar]
  29. Koo C., Wernette-Hammond M. E., Garcia Z., Malloy M. J., Uauy R., East C., Bilheimer D. W., Mahley R. W., Innerarity T. L. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. J Clin Invest. 1988 May;81(5):1332–1340. doi: 10.1172/JCI113460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kowal R. C., Herz J., Goldstein J. L., Esser V., Brown M. S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5810–5814. doi: 10.1073/pnas.86.15.5810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kraft H. G., Menzel H. J., Hoppichler F., Vogel W., Utermann G. Changes of genetic apolipoprotein phenotypes caused by liver transplantation. Implications for apolipoprotein synthesis. J Clin Invest. 1989 Jan;83(1):137–142. doi: 10.1172/JCI113849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lee B. R., Miller J. M., Yang C. Y., Ramdas L., Yang M. L., Morrisett J. D., Mims M. P. Amino acid sequence of rabbit apolipoprotein E. J Lipid Res. 1991 Jan;32(1):165–171. [PubMed] [Google Scholar]
  33. Linton M. F., Gish R., Hubl S. T., Bütler E., Esquivel C., Bry W. I., Boyles J. K., Wardell M. R., Young S. G. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest. 1991 Jul;88(1):270–281. doi: 10.1172/JCI115288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lusis A. J., Taylor B. A., Quon D., Zollman S., LeBoeuf R. C. Genetic factors controlling structure and expression of apolipoproteins B and E in mice. J Biol Chem. 1987 Jun 5;262(16):7594–7604. [PubMed] [Google Scholar]
  35. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  36. Mahley R. W. Heparan sulfate proteoglycan/low density lipoprotein receptor-related protein pathway involved in type III hyperlipoproteinemia and Alzheimer's disease. Isr J Med Sci. 1996 Jun;32(6):414–429. [PubMed] [Google Scholar]
  37. Mahley R. W., Innerarity T. L. Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta. 1983 May 24;737(2):197–222. doi: 10.1016/0304-4157(83)90001-1. [DOI] [PubMed] [Google Scholar]
  38. Mahley R. W., Innerarity T. L. Properties of lipoproteins responsible for high affinity binding to cell surface receptors of fibroblasts and smooth muscle cells. Adv Exp Med Biol. 1978;109:99–127. doi: 10.1007/978-1-4684-0967-3_6. [DOI] [PubMed] [Google Scholar]
  39. Mahley R. W., Weisgraber K. H. Canine lipoproteins and atherosclerosis. I. Isolation and characterization of plasma lipoproteins from control dogs. Circ Res. 1974 Nov;35(5):713–721. doi: 10.1161/01.res.35.5.713. [DOI] [PubMed] [Google Scholar]
  40. Mahley R. W., Weisgraber K. H., Hussain M. M., Greenman B., Fisher M., Vogel T., Gorecki M. Intravenous infusion of apolipoprotein E accelerates clearance of plasma lipoproteins in rabbits. J Clin Invest. 1989 Jun;83(6):2125–2130. doi: 10.1172/JCI114126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. McKeone B. J., Patsch J. R., Pownall H. J. Plasma triglycerides determine low density lipoprotein composition, physical properties, and cell-specific binding in cultured cells. J Clin Invest. 1993 May;91(5):1926–1933. doi: 10.1172/JCI116411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nathan B. P., Bellosta S., Sanan D. A., Weisgraber K. H., Mahley R. W., Pitas R. E. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science. 1994 May 6;264(5160):850–852. doi: 10.1126/science.8171342. [DOI] [PubMed] [Google Scholar]
  43. Paik Y. K., Chang D. J., Reardon C. A., Davies G. E., Mahley R. W., Taylor J. M. Nucleotide sequence and structure of the human apolipoprotein E gene. Proc Natl Acad Sci U S A. 1985 May;82(10):3445–3449. doi: 10.1073/pnas.82.10.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Poorman J. A., Buck R. A., Smith S. A., Overturf M. L., Loose-Mitchell D. S. Bile acid excretion and cholesterol 7 alpha-hydroxylase expression in hypercholesterolemia-resistant rabbits. J Lipid Res. 1993 Oct;34(10):1675–1685. [PubMed] [Google Scholar]
  45. Rall S. C., Jr, Weisgraber K. H., Mahley R. W. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem. 1982 Apr 25;257(8):4171–4178. [PubMed] [Google Scholar]
  46. Rensen P. C., Herijgers N., Netscher M. H., Meskers S. C., van Eck M., van Berkel T. J. Particle size determines the specificity of apolipoprotein E-containing triglyceride-rich emulsions for the LDL receptor versus hepatic remnant receptor in vivo. J Lipid Res. 1997 Jun;38(6):1070–1084. [PubMed] [Google Scholar]
  47. Rensen P. C., van Berkel T. J. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem. 1996 Jun 21;271(25):14791–14799. doi: 10.1074/jbc.271.25.14791. [DOI] [PubMed] [Google Scholar]
  48. Sanan D. A., Fan J., Bensadoun A., Taylor J. M. Hepatic lipase is abundant on both hepatocyte and endothelial cell surfaces in the liver. J Lipid Res. 1997 May;38(5):1002–1013. [PubMed] [Google Scholar]
  49. Shimano H., Yamada N., Katsuki M., Shimada M., Gotoda T., Harada K., Murase T., Fukazawa C., Takaku F., Yazaki Y. Overexpression of apolipoprotein E in transgenic mice: marked reduction in plasma lipoproteins except high density lipoprotein and resistance against diet-induced hypercholesterolemia. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1750–1754. doi: 10.1073/pnas.89.5.1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Simonet W. S., Bucay N., Lauer S. J., Taylor J. M. A far-downstream hepatocyte-specific control region directs expression of the linked human apolipoprotein E and C-I genes in transgenic mice. J Biol Chem. 1993 Apr 15;268(11):8221–8229. [PubMed] [Google Scholar]
  51. Strittmatter W. J., Weisgraber K. H., Huang D. Y., Dong L. M., Salvesen G. S., Pericak-Vance M., Schmechel D., Saunders A. M., Goldgaber D., Roses A. D. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8098–8102. doi: 10.1073/pnas.90.17.8098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Tall A. R. Plasma cholesteryl ester transfer protein. J Lipid Res. 1993 Aug;34(8):1255–1274. [PubMed] [Google Scholar]
  53. Tall A. R. Plasma lipid transfer proteins. J Lipid Res. 1986 Apr;27(4):361–367. [PubMed] [Google Scholar]
  54. Thuren T., Wilcox R. W., Sisson P., Waite M. Hepatic lipase hydrolysis of lipid monolayers. Regulation by apolipoproteins. J Biol Chem. 1991 Mar 15;266(8):4853–4861. [PubMed] [Google Scholar]
  55. Wahl G. M., Meinkoth J. L., Kimmel A. R. Northern and Southern blots. Methods Enzymol. 1987;152:572–581. doi: 10.1016/0076-6879(87)52064-x. [DOI] [PubMed] [Google Scholar]
  56. Warren R. J., Ebert D. L., Mitchell A., Barter P. J. Rabbit hepatic lipase cDNA sequence: low activity is associated with low messenger RNA levels. J Lipid Res. 1991 Aug;32(8):1333–1339. [PubMed] [Google Scholar]
  57. Weisgraber K. H. Apolipoprotein E: structure-function relationships. Adv Protein Chem. 1994;45:249–302. doi: 10.1016/s0065-3233(08)60642-7. [DOI] [PubMed] [Google Scholar]
  58. Williams K. J., Fless G. M., Petrie K. A., Snyder M. L., Brocia R. W., Swenson T. L. Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem. 1992 Jul 5;267(19):13284–13292. [PubMed] [Google Scholar]
  59. Woollett L. A., Osono Y., Herz J., Dietschy J. M. Apolipoprotein E competitively inhibits receptor-dependent low density lipoprotein uptake by the liver but has no effect on cholesterol absorption or synthesis in the mouse. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12500–12504. doi: 10.1073/pnas.92.26.12500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yamada N., Shimano H., Mokuno H., Ishibashi S., Gotohda T., Kawakami M., Watanabe Y., Akanuma Y., Murase T., Takaku F. Increased clearance of plasma cholesterol after injection of apolipoprotein E into Watanabe heritable hyperlipidemic rabbits. Proc Natl Acad Sci U S A. 1989 Jan;86(2):665–669. doi: 10.1073/pnas.86.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Yamanaka S., Balestra M. E., Ferrell L. D., Fan J., Arnold K. S., Taylor S., Taylor J. M., Innerarity T. L. Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8483–8487. doi: 10.1073/pnas.92.18.8483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zambon A., Schmidt I., Beisiegel U., Brunzell J. D. Dimeric lipoprotein lipase is bound to triglyceride-rich plasma lipoproteins. J Lipid Res. 1996 Nov;37(11):2394–2404. [PubMed] [Google Scholar]
  63. de Silva H. V., Lauer S. J., Wang J., Simonet W. S., Weisgraber K. H., Mahley R. W., Taylor J. M. Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E. J Biol Chem. 1994 Jan 21;269(3):2324–2335. [PubMed] [Google Scholar]
  64. van Barlingen H. H., de Jong H., Erkelens D. W., de Bruin T. W. Lipoprotein lipase-enhanced binding of human triglyceride-rich lipoproteins to heparan sulfate: modulation by apolipoprotein E and apolipoprotein C. J Lipid Res. 1996 Apr;37(4):754–763. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES