Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2223–2232. doi: 10.1172/JCI1164

Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats.

J Yao 1, P Kathpalia 1, D A Bushinsky 1, M J Favus 1
PMCID: PMC508810  PMID: 9593778

Abstract

Hypercalciuria in genetic hypercalciuric stone-forming (GHS) rats is accompanied by intestinal Ca hyperabsorption with normal serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels, elevation of intestinal, kidney, and bone vitamin D receptor (VDR) content, and greater 1,25(OH)2D3-induced bone resorption in vitro. To test the hypothesis that hyperresponsiveness of VDR gene expression to 1,25(OH)2D3 may mediate these observations, male GHS and wild-type Sprague- Dawley normocalciuric control rats were fed a normal Ca diet (0.6% Ca) and received a single intraperitoneal injection of either 1,25(OH)2D3 (10-200 ng/100 g body wt) or vehicle. Total RNAs were isolated from both duodenum and kidney cortex, and the VDR and calbindin mRNA levels were determined by Northern blot hybridization using specific cDNA probes. Under basal conditions, VDR mRNA levels in GHS rats were lower in duodenum and higher in kidney compared with wild-type controls. Administration of 1,25(OH)2D3 increased VDR gene expression significantly in GHS but not normocalciuric animals, in a time- and dose-dependent manner. In vivo half-life of VDR mRNA was similar in GHS and control rats in both duodenum and kidney, and was prolonged significantly (from 4-5 to > 8 h) by 1,25(OH)2D3 administration. Neither inhibition of gene transcription by actinomycin D nor inhibition of de novo protein synthesis with cycloheximide blocked the upregulation of VDR gene expression stimulated by 1,25(OH)2D3 administration. No alteration or mutation was detected in the sequence of duodenal VDR mRNA from GHS rats compared with wild-type animals. Furthermore, 1,25(OH)2D3 administration also led to an increase in duodenal and renal calbindin mRNA levels in GHS rats, whereas they were either suppressed or unchanged in wild-type animals. The results suggest that GHS rats hyperrespond to minimal doses of 1,25(OH)2D3 by an upregulation of VDR gene expression. This hyperresponsiveness of GHS rats to 1,25(OH)2D3 (a) occurs through an increase in VDR mRNA stability without involving alteration in gene transcription, de novo protein synthesis, or mRNA sequence; and (b) is likely of functional significance, and affects VDR-responsive genes in 1, 25(OH)2D3 target tissues. This unique characteristic suggests that GHS rats may be susceptible to minimal fluctuations in serum 1, 25(OH)2D3, resulting in increased VDR and VDR-responsive events, which in turn may pathologically amplify the actions of 1,25(OH)2D3 on Ca metabolism that thus contribute to the hypercalciuria and stone formation.

Full Text

The Full Text of this article is available as a PDF (585.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barilla D. E., Tolentino R., Kaplan R. A., Pak C. Y. Selective effects of thiazide on intestinal absorption of calcium and adsorptive and renal hypercalciurias. Metabolism. 1978 Feb;27(2):125–131. doi: 10.1016/0026-0495(78)90158-0. [DOI] [PubMed] [Google Scholar]
  2. Breslau N. A., Preminger G. M., Adams B. V., Otey J., Pak C. Y. Use of ketoconazole to probe the pathogenetic importance of 1,25-dihydroxyvitamin D in absorptive hypercalciuria. J Clin Endocrinol Metab. 1992 Dec;75(6):1446–1452. doi: 10.1210/jcem.75.6.1464646. [DOI] [PubMed] [Google Scholar]
  3. Broadus A. E., Insogna K. L., Lang R., Ellison A. F., Dreyer B. E. Evidence for disordered control of 1,25-dihydroxyvitamin D production in absorptive hypercalciuria. N Engl J Med. 1984 Jul 12;311(2):73–80. doi: 10.1056/NEJM198407123110201. [DOI] [PubMed] [Google Scholar]
  4. Burmester J. K., Wiese R. J., Maeda N., DeLuca H. F. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9499–9502. doi: 10.1073/pnas.85.24.9499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bushinsky D. A., Favus M. J. Mechanism of hypercalciuria in genetic hypercalciuric rats. Inherited defect in intestinal calcium transport. J Clin Invest. 1988 Nov;82(5):1585–1591. doi: 10.1172/JCI113770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bushinsky D. A., Grynpas M. D., Nilsson E. L., Nakagawa Y., Coe F. L. Stone formation in genetic hypercalciuric rats. Kidney Int. 1995 Dec;48(6):1705–1713. doi: 10.1038/ki.1995.468. [DOI] [PubMed] [Google Scholar]
  7. CANIGGIA A., GENNARI C., CESARI L. INTESTINAL ABSORPTION OF 45CA IN STONE-FORMING PATIENTS. Br Med J. 1965 Feb 13;1(5432):427–429. doi: 10.1136/bmj.1.5432.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen T. L., Hauschka P. V., Cabrales S., Feldman D. The effects of 1,25-dihydroxyvitamin D3 and dexamethasone on rat osteoblast-like primary cell cultures: receptor occupancy and functional expression patterns for three different bioresponses. Endocrinology. 1986 Jan;118(1):250–259. doi: 10.1210/endo-118-1-250. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Coe F. L., Favus M. J., Crockett T., Strauss A. L., Parks J. H., Porat A., Gantt C. L., Sherwood L. M. Effects of low-calcium diet on urine calcium excretion, parathyroid function and serum 1,25(OH)2D3 levels in patients with idiopathic hypercalciuria and in normal subjects. Am J Med. 1982 Jan;72(1):25–32. doi: 10.1016/0002-9343(82)90567-8. [DOI] [PubMed] [Google Scholar]
  11. Costa E. M., Feldman D. Measurement of 1,25-dihydroxyvitamin D3 receptor turnover by dense amino acid labeling: changes during receptor up-regulation by vitamin D metabolites. Endocrinology. 1987 Mar;120(3):1173–1178. doi: 10.1210/endo-120-3-1173. [DOI] [PubMed] [Google Scholar]
  12. Dokoh S., Donaldson C. A., Haussler M. R. Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: correlation with the 1,25-dihydroxyvitamin D3 receptor. Cancer Res. 1984 May;44(5):2103–2109. [PubMed] [Google Scholar]
  13. Dupret J. M., Brun P., Perret C., Lomri N., Thomasset M., Cuisinier-Gleizes P. Transcriptional and post-transcriptional regulation of vitamin D-dependent calcium-binding protein gene expression in the rat duodenum by 1,25-dihydroxycholecalciferol. J Biol Chem. 1987 Dec 5;262(34):16553–16557. [PubMed] [Google Scholar]
  14. Favus M. J., Mangelsdorf D. J., Tembe V., Coe B. J., Haussler M. R. Evidence for in vivo upregulation of the intestinal vitamin D receptor during dietary calcium restriction in the rat. J Clin Invest. 1988 Jul;82(1):218–224. doi: 10.1172/JCI113574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKINSON A., PYRAH L. N. The urinary excretion of calcium and inorganic phosphate in 344 patients with calcium stone of renal origin. Br J Surg. 1958 Jul;46(195):10–18. doi: 10.1002/bjs.18004619504. [DOI] [PubMed] [Google Scholar]
  16. Hodgkinson A. Relations between oxalic acid, calcium, magnesium and creatinine excretion in normal men and male patients with calcium oxalate kidney stones. Clin Sci Mol Med. 1974 Mar;46(3):357–367. doi: 10.1042/cs0460357. [DOI] [PubMed] [Google Scholar]
  17. Huang Y. C., Lee S., Stolz R., Gabrielides C., Pansini-Porta A., Bruns M. E., Bruns D. E., Miffin T. E., Pike J. W., Christakos S. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression. J Biol Chem. 1989 Oct 15;264(29):17454–17461. [PubMed] [Google Scholar]
  18. Insogna K. L., Broadus A. E., Dreyer B. E., Ellison A. F., Gertner J. M. Elevated production rate of 1,25-dihydroxyvitamin D in patients with absorptive hypercalciuria. J Clin Endocrinol Metab. 1985 Sep;61(3):490–495. doi: 10.1210/jcem-61-3-490. [DOI] [PubMed] [Google Scholar]
  19. Kaplan R. A., Haussler M. R., Deftos L. J., Bone H., Pak C. Y. The role of 1 alpha, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977 May;59(5):756–760. doi: 10.1172/JCI108696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kim M., Sessler N. E., Tembe V., Favus M. J., Bushinsky D. A. Response of genetic hypercalciuric rats to a low calcium diet. Kidney Int. 1993 Jan;43(1):189–196. doi: 10.1038/ki.1993.31. [DOI] [PubMed] [Google Scholar]
  21. Krieger N. S., Stathopoulos V. M., Bushinsky D. A. Increased sensitivity to 1,25(OH)2D3 in bone from genetic hypercalciuric rats. Am J Physiol. 1996 Jul;271(1 Pt 1):C130–C135. doi: 10.1152/ajpcell.1996.271.1.C130. [DOI] [PubMed] [Google Scholar]
  22. Li X. Q., Tembe V., Horwitz G. M., Bushinsky D. A., Favus M. J. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest. 1993 Feb;91(2):661–667. doi: 10.1172/JCI116246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liberman U. A., Sperling O., Atsmon A., Frank M., Modan M., Vries A. D. Metabolic and calcium kinetic studies in idiopathic hypercalciuria. J Clin Invest. 1968 Dec;47(12):2580–2590. doi: 10.1172/JCI105940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lowe K. E., Maiyar A. C., Norman A. W. Vitamin D-mediated gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(1):65–109. [PubMed] [Google Scholar]
  25. McDonnell D. P., Mangelsdorf D. J., Pike J. W., Haussler M. R., O'Malley B. W. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science. 1987 Mar 6;235(4793):1214–1217. doi: 10.1126/science.3029866. [DOI] [PubMed] [Google Scholar]
  26. Naveh-Many T., Marx R., Keshet E., Pike J. W., Silver J. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990 Dec;86(6):1968–1975. doi: 10.1172/JCI114931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pak C. Y., Oata M., Lawrence E. C., Snyder W. The hypercalciurias. Causes, parathyroid functions, and diagnostic criteria. J Clin Invest. 1974 Aug;54(2):387–400. doi: 10.1172/JCI107774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reinhardt T. A., Horst R. L. Self-induction of 1,25-dihydroxyvitamin D3 metabolism limits receptor occupancy and target tissue responsiveness. J Biol Chem. 1989 Sep 25;264(27):15917–15921. [PubMed] [Google Scholar]
  29. Shen F. H., Baylink D. J., Nielsen R. L., Sherrard D. J., Ivey J. L., Haussler M. R. Increased serum 1,25-dihydroxyvitamin D in idiopathic hypercalciuria. J Lab Clin Med. 1977 Dec;90(6):955–962. [PubMed] [Google Scholar]
  30. Sriussadaporn S., Wong M. S., Pike J. W., Favus M. J. Tissue specificity and mechanism of vitamin D receptor up-regulation during dietary phosphorus restriction in the rat. J Bone Miner Res. 1995 Feb;10(2):271–280. doi: 10.1002/jbmr.5650100214. [DOI] [PubMed] [Google Scholar]
  31. Strom M., Sandgren M. E., Brown T. A., DeLuca H. F. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9770–9773. doi: 10.1073/pnas.86.24.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sutton R. A., Walker V. R. Responses to hydrochlorothiazide and acetazolamide in patients with calcium stones. Evidence suggesting a defect in renal tubular function. N Engl J Med. 1980 Mar 27;302(13):709–713. doi: 10.1056/NEJM198003273021302. [DOI] [PubMed] [Google Scholar]
  33. Theofan G., Norman A. W. Effects of alpha-amanitin and cycloheximide on 1,25-dihydroxyvitamin D3-dependent calbindin-D28K and its mRNA in vitamin D3-replete chick intestine. J Biol Chem. 1986 Jun 5;261(16):7311–7315. [PubMed] [Google Scholar]
  34. Tsuruoka S., Bushinsky D. A., Schwartz G. J. Defective renal calcium reabsorption in genetic hypercalciuric rats. Kidney Int. 1997 May;51(5):1540–1547. doi: 10.1038/ki.1997.212. [DOI] [PubMed] [Google Scholar]
  35. Van Den Berg C. J., Kumar R., Wilson D. M., Heath H., 3rd, Smith L. H. Orthophosphate therapy decreases urinary calcium excretion and serum 1,25-dihydroxyvitamin D concentrations in idiopathic hypercalciuria. J Clin Endocrinol Metab. 1980 Nov;51(5):998–1001. doi: 10.1210/jcem-51-5-998. [DOI] [PubMed] [Google Scholar]
  36. Varghese S., Lee S., Huang Y. C., Christakos S. Analysis of rat vitamin D-dependent calbindin-D28k gene expression. J Biol Chem. 1988 Jul 15;263(20):9776–9784. [PubMed] [Google Scholar]
  37. Wood T. L., Kobayashi Y., Frantz G., Varghese S., Christakos S., Tobin A. J. Molecular cloning of mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28K): expression of calbindin-D28K RNAs in rodent brain and kidney. DNA. 1988 Nov;7(9):585–593. doi: 10.1089/dna.1988.7.585. [DOI] [PubMed] [Google Scholar]
  38. Yao J., Bone R. C., Sawhney R. S. Differential effects of tumor necrosis factor-alpha on the expression of fibronectin and collagen genes in cultured bovine endothelial cells. Cell Mol Biol Res. 1995;41(1):17–28. [PubMed] [Google Scholar]
  39. Yao J., Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res. 1992 Oct;71(4):831–839. doi: 10.1161/01.res.71.4.831. [DOI] [PubMed] [Google Scholar]
  40. Yao J., Glant T. T., Lark M. W., Mikecz K., Jacobs J. J., Hutchinson N. I., Hoerrner L. A., Kuettner K. E., Galante J. O. The potential role of fibroblasts in periprosthetic osteolysis: fibroblast response to titanium particles. J Bone Miner Res. 1995 Sep;10(9):1417–1427. doi: 10.1002/jbmr.5650100920. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES