Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2233–2239. doi: 10.1172/JCI200

Insulin therapy in burn patients does not contribute to hepatic triglyceride production.

A Aarsland 1, D L Chinkes 1, Y Sakurai 1, T T Nguyen 1, D N Herndon 1, R R Wolfe 1
PMCID: PMC508811  PMID: 9593779

Abstract

Lipid kinetics were studied in six severely burned patients who were treated with a high dose of exogenous insulin plus glucose to promote protein metabolism. The patients were 20+/-2-yr-old (SD) with 63+/-8% total body surface area burned. They were studied in a randomized order (a) in the fed state on the seventh day of a control period (C) of continuous high-carbohydrate enteral feeding alone, and (b) on the seventh day of enteral feeding plus exogenous insulin (200 pmol/h = 28 U/h) with extra glucose given as needed to avoid hypoglycemia (I+G). Despite a glucose delivery rate approximately 100% in excess of energy requirements, the following lipid parameters were unchanged: (a) total hepatic VLDL triglyceride (TG) secretion rate (0.165+/-0.138 [C] vs. 0.154+/- 0.138 mmol/kg . d-1 [I+G]), (b) plasma TG concentration (1.58+/-0.66 [C] vs. 1. 36+/-0.41 mmol/liter [I+G]), and (c) plasma VLDL TG concentration (0. 68+/-0.79 [C] vs. 0.67+/- 0.63 mmol/liter [I+G]). Instead, the high-carbohydrate delivery in conjunction with insulin therapy increased the proportion of de novo-synthesized palmitate in VLDL TG from 13+/-5% (C) to 34+/-14% (I+G), with a corresponding decreased amount of palmitate from lipolysis. In association with the doubling of the secretion rate of de novo-synthesized fatty acid (FA) in VLDL TG during insulin therapy (P > 0.5), the relative amount of palmitate and stearate increased from 35+/-5 to 44+/-8% and 4+/-1 to 7+/-2%, respectively, in VLDL TG, while the relative concentration of oleate and linoleate decreased from 43+/-5 to 37+/-6% and 8+/-4% to 2+/-2%, respectively. A 15-fold increase in plasma insulin concentration did not change the rate of release of FA into plasma (8.22+/-2.86 [C] vs. 8.72+/-6.68 mmol/kg.d-1 [I+G]. The peripheral release of FA represents a far greater potential for hepatic lipid accumulation in burn patients than the endogenous hepatic fat synthesis, even during excessive carbohydrate intake in conjunction with insulin therapy.

Full Text

The Full Text of this article is available as a PDF (175.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarsland A., Chinkes D., Wolfe R. R., Barrow R. E., Nelson S. O., Pierre E., Herndon D. N. Beta-blockade lowers peripheral lipolysis in burn patients receiving growth hormone. Rate of hepatic very low density lipoprotein triglyceride secretion remains unchanged. Ann Surg. 1996 Jun;223(6):777–789. doi: 10.1097/00000658-199606000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aarsland A., Chinkes D., Wolfe R. R. Contributions of de novo synthesis of fatty acids to total VLDL-triglyceride secretion during prolonged hyperglycemia/hyperinsulinemia in normal man. J Clin Invest. 1996 Nov 1;98(9):2008–2017. doi: 10.1172/JCI119005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aarsland A., Chinkes D., Wolfe R. R. Hepatic and whole-body fat synthesis in humans during carbohydrate overfeeding. Am J Clin Nutr. 1997 Jun;65(6):1774–1782. doi: 10.1093/ajcn/65.6.1774. [DOI] [PubMed] [Google Scholar]
  4. Burke J. F., Wolfe R. R., Mullany C. J., Mathews D. E., Bier D. M. Glucose requirements following burn injury. Parameters of optimal glucose infusion and possible hepatic and respiratory abnormalities following excessive glucose intake. Ann Surg. 1979 Sep;190(3):274–285. doi: 10.1097/00000658-197909000-00002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chascione C., Elwyn D. H., Davila M., Gil K. M., Askanazi J., Kinney J. M. Effect of carbohydrate intake on de novo lipogenesis in human adipose tissue. Am J Physiol. 1987 Dec;253(6 Pt 1):E664–E669. doi: 10.1152/ajpendo.1987.253.6.E664. [DOI] [PubMed] [Google Scholar]
  6. Chinkes D. L., Aarsland A., Rosenblatt J., Wolfe R. R. Comparison of mass isotopomer dilution methods used to compute VLDL production in vivo. Am J Physiol. 1996 Aug;271(2 Pt 1):E373–E383. doi: 10.1152/ajpendo.1996.271.2.E373. [DOI] [PubMed] [Google Scholar]
  7. Coppack S. W., Jensen M. D., Miles J. M. In vivo regulation of lipolysis in humans. J Lipid Res. 1994 Feb;35(2):177–193. [PubMed] [Google Scholar]
  8. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  9. Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism. 1988 Mar;37(3):287–301. doi: 10.1016/0026-0495(88)90110-2. [DOI] [PubMed] [Google Scholar]
  10. Fukuda N., Ontko J. A. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver. J Lipid Res. 1984 Aug;25(8):831–842. [PubMed] [Google Scholar]
  11. Gibbons G. F. Insulin, diabetes and hepatic very-low-density lipoprotein metabolism. Biochem Soc Trans. 1989 Feb;17(1):49–51. doi: 10.1042/bst0170049. [DOI] [PubMed] [Google Scholar]
  12. Grundy S. M., Mok H. Y., Zech L., Steinberg D., Berman M. Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest. 1979 Jun;63(6):1274–1283. doi: 10.1172/JCI109422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guenst J. M., Nelson L. D. Predictors of total parenteral nutrition-induced lipogenesis. Chest. 1994 Feb;105(2):553–559. doi: 10.1378/chest.105.2.553. [DOI] [PubMed] [Google Scholar]
  14. Hellerstein M. K., Kletke C., Kaempfer S., Wu K., Shackleton C. H. Use of mass isotopomer distributions in secreted lipids to sample lipogenic acetyl-CoA pool in vivo in humans. Am J Physiol. 1991 Oct;261(4 Pt 1):E479–E486. doi: 10.1152/ajpendo.1991.261.4.E479. [DOI] [PubMed] [Google Scholar]
  15. Hellerstein M. K., Neese R. A. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am J Physiol. 1992 Nov;263(5 Pt 1):E988–1001. doi: 10.1152/ajpendo.1992.263.5.E988. [DOI] [PubMed] [Google Scholar]
  16. Herndon D. N., Stein M. D., Rutan T. C., Abston S., Linares H. Failure of TPN supplementation to improve liver function, immunity, and mortality in thermally injured patients. J Trauma. 1987 Feb;27(2):195–204. doi: 10.1097/00005373-198702000-00018. [DOI] [PubMed] [Google Scholar]
  17. JAMES G. W., 3rd, PURNELL O. J., EVANS E. I. The anemia of thermal injury. II. Studies of liver function. J Clin Invest. 1951 Feb;30(2):191–199. doi: 10.1172/JCI102431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lewis G. F., Uffelman K. D., Szeto L. W., Weller B., Steiner G. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J Clin Invest. 1995 Jan;95(1):158–166. doi: 10.1172/JCI117633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McGowan M. W., Artiss J. D., Strandbergh D. R., Zak B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem. 1983 Mar;29(3):538–542. [PubMed] [Google Scholar]
  20. Newton R. S., Freedland R. A. The effects of specific lipogenic substrates and metabolic inhibitors on de novo fatty acid synthesis in isolated hepatocytes from chow-fed female rats. Arch Biochem Biophys. 1980 Oct 1;204(1):379–386. doi: 10.1016/0003-9861(80)90046-6. [DOI] [PubMed] [Google Scholar]
  21. Revhaug A., Mjaaland M. Growth hormone and surgery. Horm Res. 1993;40(1-3):99–101. doi: 10.1159/000183775. [DOI] [PubMed] [Google Scholar]
  22. Sakurai Y., Aarsland A., Herndon D. N., Chinkes D. L., Pierre E., Nguyen T. T., Patterson B. W., Wolfe R. R. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg. 1995 Sep;222(3):283–297. doi: 10.1097/00000658-199509000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Talaat S. M., Beheri G el-D, Zaki M. S., el-Bolkainy M. N. Prevention of early histopathological changes in the liver in extensive burns. Br J Plast Surg. 1973 Apr;26(2):132–139. doi: 10.1016/s0007-1226(73)80006-2. [DOI] [PubMed] [Google Scholar]
  24. Wilmore D. W., Moylan J. A., Jr, Bristow B. F., Mason A. D., Jr, Pruitt B. A., Jr Anabolic effects of human growth hormone and high caloric feedings following thermal injury. Surg Gynecol Obstet. 1974 Jun;138(6):875–884. [PubMed] [Google Scholar]
  25. Wolfe B. M., Klein S., Peters E. J., Schmidt B. F., Wolfe R. R. Effect of elevated free fatty acids on glucose oxidation in normal humans. Metabolism. 1988 Apr;37(4):323–329. doi: 10.1016/0026-0495(88)90131-x. [DOI] [PubMed] [Google Scholar]
  26. Wolfe R. R. Herman Award Lecture, 1996: relation of metabolic studies to clinical nutrition--the example of burn injury. Am J Clin Nutr. 1996 Nov;64(5):800–808. doi: 10.1093/ajcn/64.5.800. [DOI] [PubMed] [Google Scholar]
  27. Wolff W. A., Elkinton J. R., Rhoads J. E. LIVER DAMAGE AND DEXTROSE TOLERANCE IN SEVERE BURNS. Ann Surg. 1940 Jul;112(1):158–160. doi: 10.1097/00000658-194007000-00018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Woodside W. F., Heimberg M. Effects of anti-insulin serum, insulin, and glucose on output of triglycerides and on ketogenesis by the perfused rat liver. J Biol Chem. 1976 Jan 10;251(1):13–23. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES