Abstract
There is now substantial evidence that Borrelia burgdorferi, the Lyme disease spirochete, undergoes major alterations in antigenic composition as it cycles between its arthropod and mammalian hosts. In this report, we cultivated B. burgdorferi 297 within dialysis membrane chambers implanted into the peritoneal cavities of rats to induce antigenic changes similar to those which occur during mammalian infection. Chamber-grown spirochetes, which remained fully virulent, did not express either outer surface protein A or Lp6.6, lipoproteins known to be downregulated after mammalian infection. However, they did, express p21, a well characterized outer surface protein E homologue, which is selectively expressed during infection. SDS-PAGE, two-dimensional gel electrophoresis, and immunoblot analysis revealed that chamber-grown borreliae also expressed uncharacterized proteins not expressed by in vitro-cultivated spirochetes; reactivity with sera from mice chronically infected with B. burgdorferi 297 confirmed that many of these novel proteins are selectively expressed during experimental murine infection. Finally, we used differential display RT-PCR to identify transcripts of other differentially expressed B. burgdorferi genes. One gene (2.9-7lpB) identified with this technique belongs to a family of genes located on homologous 32- and 18-kb circular plasmids. The lipoprotein encoded by 2.9-7lpB was shown to be selectively expressed by chamber-grown spirochetes and by spirochetes during experimental infection. Cultivation of B. burgdorferi in rat peritoneal implants represents a novel system for studying Lyme disease spirochetes in a mammalian host-adapted state.
Full Text
The Full Text of this article is available as a PDF (392.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abouhamad W. N., Manson M. D. The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Mol Microbiol. 1994 Dec;14(5):1077–1092. doi: 10.1111/j.1365-2958.1994.tb01340.x. [DOI] [PubMed] [Google Scholar]
- Akins D. R., Porcella S. F., Popova T. G., Shevchenko D., Baker S. I., Li M., Norgard M. V., Radolf J. D. Evidence for in vivo but not in vitro expression of a Borrelia burgdorferi outer surface protein F (OspF) homologue. Mol Microbiol. 1995 Nov;18(3):507–520. doi: 10.1111/j.1365-2958.1995.mmi_18030507.x. [DOI] [PubMed] [Google Scholar]
- Arbuthnott J. P., Arbuthnott E. R., Arbuthnott A. D., Pike W. J., Cockayne A. Investigation of microbial growth in vivo: evaluation of a novel in vivo chamber implant system. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):75–79. doi: 10.1111/j.1574-6968.1992.tb14022.x. [DOI] [PubMed] [Google Scholar]
- Asch E. S., Bujak D. I., Weiss M., Peterson M. G., Weinstein A. Lyme disease: an infectious and postinfectious syndrome. J Rheumatol. 1994 Mar;21(3):454–461. [PubMed] [Google Scholar]
- Baranton G., Postic D., Saint Girons I., Boerlin P., Piffaretti J. C., Assous M., Grimont P. A. Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis. Int J Syst Bacteriol. 1992 Jul;42(3):378–383. doi: 10.1099/00207713-42-3-378. [DOI] [PubMed] [Google Scholar]
- Barbour A. G. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med. 1984 Jul-Aug;57(4):521–525. [PMC free article] [PubMed] [Google Scholar]
- Barbour A. G. The molecular biology of Borrelia. Rev Infect Dis. 1989 Sep-Oct;11 (Suppl 6):S1470–S1474. doi: 10.1093/clinids/11.supplement_6.s1470. [DOI] [PubMed] [Google Scholar]
- Barthold S. W., Feng S., Bockenstedt L. K., Fikrig E., Feen K. Protective and arthritis-resolving activity in sera of mice infected with Borrelia burgdorferi. Clin Infect Dis. 1997 Jul;25 (Suppl 1):S9–17. doi: 10.1086/516166. [DOI] [PubMed] [Google Scholar]
- Barthold S. W., Fikrig E., Bockenstedt L. K., Persing D. H. Circumvention of outer surface protein A immunity by host-adapted Borrelia burgdorferi. Infect Immun. 1995 Jun;63(6):2255–2261. doi: 10.1128/iai.63.6.2255-2261.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayer M. E., Zhang L., Bayer M. H. Borrelia burgdorferi DNA in the urine of treated patients with chronic Lyme disease symptoms. A PCR study of 97 cases. Infection. 1996 Sep-Oct;24(5):347–353. doi: 10.1007/BF01716077. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burkot T. R., Piesman J., Wirtz R. A. Quantitation of the Borrelia burgdorferi outer surface protein A in Ixodes scapularis: fluctuations during the tick life cycle, doubling times, and loss while feeding. J Infect Dis. 1994 Oct;170(4):883–889. doi: 10.1093/infdis/170.4.883. [DOI] [PubMed] [Google Scholar]
- Callister S. M., Schell R. F., Lovrich S. D. Lyme disease assay which detects killed Borrelia burgdorferi. J Clin Microbiol. 1991 Sep;29(9):1773–1776. doi: 10.1128/jcm.29.9.1773-1776.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casjens S., van Vugt R., Tilly K., Rosa P. A., Stevenson B. Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol. 1997 Jan;179(1):217–227. doi: 10.1128/jb.179.1.217-227.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Champion C. I., Blanco D. R., Skare J. T., Haake D. A., Giladi M., Foley D., Miller J. N., Lovett M. A. A 9.0-kilobase-pair circular plasmid of Borrelia burgdorferi encodes an exported protein: evidence for expression only during infection. Infect Immun. 1994 Jul;62(7):2653–2661. doi: 10.1128/iai.62.7.2653-2661.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox D. L., Akins D. R., Bourell K. W., Lahdenne P., Norgard M. V., Radolf J. D. Limited surface exposure of Borrelia burgdorferi outer surface lipoproteins. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7973–7978. doi: 10.1073/pnas.93.15.7973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craft J. E., Fischer D. K., Shimamoto G. T., Steere A. C. Antigens of Borrelia burgdorferi recognized during Lyme disease. Appearance of a new immunoglobulin M response and expansion of the immunoglobulin G response late in the illness. J Clin Invest. 1986 Oct;78(4):934–939. doi: 10.1172/JCI112683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Das S., Barthold S. W., Giles S. S., Montgomery R. R., Telford S. R., 3rd, Fikrig E. Temporal pattern of Borrelia burgdorferi p21 expression in ticks and the mammalian host. J Clin Invest. 1997 Mar 1;99(5):987–995. doi: 10.1172/JCI119264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Silva A. M., Fikrig E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg. 1995 Oct;53(4):397–404. doi: 10.4269/ajtmh.1995.53.397. [DOI] [PubMed] [Google Scholar]
- Dersch P., Schmidt K., Bremer E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol Microbiol. 1993 May;8(5):875–889. doi: 10.1111/j.1365-2958.1993.tb01634.x. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dressler F., Whalen J. A., Reinhardt B. N., Steere A. C. Western blotting in the serodiagnosis of Lyme disease. J Infect Dis. 1993 Feb;167(2):392–400. doi: 10.1093/infdis/167.2.392. [DOI] [PubMed] [Google Scholar]
- Dulaney J. T., Hatch F. E., Jr Peritoneal dialysis and loss of proteins: a review. Kidney Int. 1984 Sep;26(3):253–262. doi: 10.1038/ki.1984.167. [DOI] [PubMed] [Google Scholar]
- Fikrig E., Barthold S. W., Flavell R. A. OspA vaccination of mice with established Borrelia burgdorferi infection alters disease but not infection. Infect Immun. 1993 Jun;61(6):2553–2557. doi: 10.1128/iai.61.6.2553-2557.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fikrig E., Barthold S. W., Sun W., Feng W., Telford S. R., 3rd, Flavell R. A. Borrelia burgdorferi P35 and P37 proteins, expressed in vivo, elicit protective immunity. Immunity. 1997 May;6(5):531–539. doi: 10.1016/s1074-7613(00)80341-6. [DOI] [PubMed] [Google Scholar]
- Foley D. M., Wang Y. P., Wu X. Y., Blanco D. R., Lovett M. A., Miller J. N. Acquired resistance to Borrelia burgdorferi infection in the rabbit. Comparison between outer surface protein A vaccine- and infection-derived immunity. J Clin Invest. 1997 Apr 15;99(8):2030–2035. doi: 10.1172/JCI119371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R., Hickey E. K. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997 Dec 11;390(6660):580–586. doi: 10.1038/37551. [DOI] [PubMed] [Google Scholar]
- Givskov M., Molin S. Expression of extracellular phospholipase from Serratia liquefaciens is growth-phase-dependent, catabolite-repressed and regulated by anaerobiosis. Mol Microbiol. 1992 May;6(10):1363–1374. doi: 10.1111/j.1365-2958.1992.tb00857.x. [DOI] [PubMed] [Google Scholar]
- Guiney D. G. Regulation of bacterial virulence gene expression by the host environment. J Clin Invest. 1997 Feb 15;99(4):565–569. doi: 10.1172/JCI119196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurtenbach U., Museteanu C., Gasser J., Schaible U. E., Simon M. M. Studies on early events of Borrelia burgdorferi-induced cytokine production in immunodeficient SCID mice by using a tissue chamber model for acute inflammation. Int J Exp Pathol. 1995 Apr;76(2):111–123. [PMC free article] [PubMed] [Google Scholar]
- Indest K. J., Ramamoorthy R., Solé M., Gilmore R. D., Johnson B. J., Philipp M. T. Cell-density-dependent expression of Borrelia burgdorferi lipoproteins in vitro. Infect Immun. 1997 Apr;65(4):1165–1171. doi: 10.1128/iai.65.4.1165-1171.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonsson M., Elmros T., Bergström S. Subcutaneous implanted chambers in different mouse strains as an animal model to study genetic stability during infection with Lyme disease Borrelia. Microb Pathog. 1995 Feb;18(2):109–114. doi: 10.1016/s0882-4010(95)90101-9. [DOI] [PubMed] [Google Scholar]
- Katona L. I., Beck G., Habicht G. S. Purification and immunological characterization of a major low-molecular-weight lipoprotein from Borrelia burgdorferi. Infect Immun. 1992 Dec;60(12):4995–5003. doi: 10.1128/iai.60.12.4995-5003.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly N. M., Bell A., Hancock R. E. Surface characteristics of Pseudomonas aeruginosa grown in a chamber implant model in mice and rats. Infect Immun. 1989 Feb;57(2):344–350. doi: 10.1128/iai.57.2.344-350.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krediet R. T., Koomen G. C., Koopman M. G., Hoek F. J., Struijk D. G., Boeschoten E. W., Arisz L. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int. 1989 Apr;35(4):1064–1072. doi: 10.1038/ki.1989.91. [DOI] [PubMed] [Google Scholar]
- Lahdenne P., Porcella S. F., Hagman K. E., Akins D. R., Popova T. G., Cox D. L., Katona L. I., Radolf J. D., Norgard M. V. Molecular characterization of a 6.6-kilodalton Borrelia burgdorferi outer membrane-associated lipoprotein (lp6.6) which appears to be downregulated during mammalian infection. Infect Immun. 1997 Feb;65(2):412–421. doi: 10.1128/iai.65.2.412-421.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam T. T., Nguyen T. P., Montgomery R. R., Kantor F. S., Fikrig E., Flavell R. A. Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease. Infect Immun. 1994 Jan;62(1):290–298. doi: 10.1128/iai.62.1.290-298.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lane R. S., Piesman J., Burgdorfer W. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol. 1991;36:587–609. doi: 10.1146/annurev.en.36.010191.003103. [DOI] [PubMed] [Google Scholar]
- Marconi R. T., Sung S. Y., Hughes C. A., Carlyon J. A. Molecular and evolutionary analyses of a variable series of genes in Borrelia burgdorferi that are related to ospE and ospF, constitute a gene family, and share a common upstream homology box. J Bacteriol. 1996 Oct;178(19):5615–5626. doi: 10.1128/jb.178.19.5615-5626.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mekalanos J. J. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol. 1992 Jan;174(1):1–7. doi: 10.1128/jb.174.1.1-7.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikulskis A. V., Delor I., Thi V. H., Cornelis G. R. Regulation of the Yersinia enterocolitica enterotoxin Yst gene. Influence of growth phase, temperature, osmolarity, pH and bacterial host factors. Mol Microbiol. 1994 Dec;14(5):905–915. doi: 10.1111/j.1365-2958.1994.tb01326.x. [DOI] [PubMed] [Google Scholar]
- Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
- Montgomery R. R., Malawista S. E., Feen K. J., Bockenstedt L. K. Direct demonstration of antigenic substitution of Borrelia burgdorferi ex vivo: exploration of the paradox of the early immune response to outer surface proteins A and C in Lyme disease. J Exp Med. 1996 Jan 1;183(1):261–269. doi: 10.1084/jem.183.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
- Nocton J. J., Steere A. C. Lyme disease. Adv Intern Med. 1995;40:69–117. [PubMed] [Google Scholar]
- O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
- Porcella S. F., Popova T. G., Akins D. R., Li M., Radolf J. D., Norgard M. V. Borrelia burgdorferi supercoiled plasmids encode multicopy tandem open reading frames and a lipoprotein gene family. J Bacteriol. 1996 Jun;178(11):3293–3307. doi: 10.1128/jb.178.11.3293-3307.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saint Girons I., Old I. G., Davidson B. E. Molecular biology of the Borrelia, bacteria with linear replicons. Microbiology. 1994 Aug;140(Pt 8):1803–1816. doi: 10.1099/13500872-140-8-1803. [DOI] [PubMed] [Google Scholar]
- Schwan T. G., Burgdorfer W., Garon C. F. Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect Immun. 1988 Aug;56(8):1831–1836. doi: 10.1128/iai.56.8.1831-1836.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2909–2913. doi: 10.1073/pnas.92.7.2909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinsky R. J., Piesman J. Ear punch biopsy method for detection and isolation of Borrelia burgdorferi from rodents. J Clin Microbiol. 1989 Aug;27(8):1723–1727. doi: 10.1128/jcm.27.8.1723-1727.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slauch J. M., Mahan M. J., Mekalanos J. J. In vivo expression technology for selection of bacterial genes specifically induced in host tissues. Methods Enzymol. 1994;235:481–492. doi: 10.1016/0076-6879(94)35164-3. [DOI] [PubMed] [Google Scholar]
- Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
- Smith R. P., Jr, Rand P. W., Lacombe E. H., Telford S. R., 3rd, Rich S. M., Piesman J., Spielman A. Norway rats as reservoir hosts for Lyme disease spirochetes on Monhegan Island, Maine. J Infect Dis. 1993 Sep;168(3):687–691. doi: 10.1093/infdis/168.3.687. [DOI] [PubMed] [Google Scholar]
- Steere A. C., Grodzicki R. L., Kornblatt A. N., Craft J. E., Barbour A. G., Burgdorfer W., Schmid G. P., Johnson E., Malawista S. E. The spirochetal etiology of Lyme disease. N Engl J Med. 1983 Mar 31;308(13):733–740. doi: 10.1056/NEJM198303313081301. [DOI] [PubMed] [Google Scholar]
- Stevenson B., Casjens S., van Vugt R., Porcella S. F., Tilly K., Bono J. L., Rosa P. Characterization of cp18, a naturally truncated member of the cp32 family of Borrelia burgdorferi plasmids. J Bacteriol. 1997 Jul;179(13):4285–4291. doi: 10.1128/jb.179.13.4285-4291.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevenson B., Schwan T. G., Rosa P. A. Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1995 Nov;63(11):4535–4539. doi: 10.1128/iai.63.11.4535-4539.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Straubinger R. K., Summers B. A., Chang Y. F., Appel M. J. Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J Clin Microbiol. 1997 Jan;35(1):111–116. doi: 10.1128/jcm.35.1.111-116.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suk K., Das S., Sun W., Jwang B., Barthold S. W., Flavell R. A., Fikrig E. Borrelia burgdorferi genes selectively expressed in the infected host. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4269–4273. doi: 10.1073/pnas.92.10.4269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swancutt M. A., Twehous D. A., Norgard M. V. Monoclonal antibody selection and analysis of a recombinant DNA-derived surface immunogen of Treponema pallidum expressed in Escherichia coli. Infect Immun. 1986 Apr;52(1):110–119. doi: 10.1128/iai.52.1.110-119.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdivia R. H., Falkow S. Probing bacterial gene expression within host cells. Trends Microbiol. 1997 Sep;5(9):360–363. doi: 10.1016/S0966-842X(97)01111-6. [DOI] [PubMed] [Google Scholar]
- Wallich R., Brenner C., Kramer M. D., Simon M. M. Molecular cloning and immunological characterization of a novel linear-plasmid-encoded gene, pG, of Borrelia burgdorferi expressed only in vivo. Infect Immun. 1995 Sep;63(9):3327–3335. doi: 10.1128/iai.63.9.3327-3335.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weigel L. M., Brandt M. E., Norgard M. V. Analysis of the N-terminal region of the 47-kilodalton integral membrane lipoprotein of Treponema pallidum. Infect Immun. 1992 Apr;60(4):1568–1576. doi: 10.1128/iai.60.4.1568-1576.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Silva A. M., Fikrig E. Arthropod- and host-specific gene expression by Borrelia burgdorferi. J Clin Invest. 1997 Feb 1;99(3):377–379. doi: 10.1172/JCI119169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Silva A. M., Fikrig E., Hodzic E., Kantor F. S., Telford S. R., 3rd, Barthold S. W. Immune evasion by tickborne and host-adapted Borrelia burgdorferi. J Infect Dis. 1998 Feb;177(2):395–400. doi: 10.1086/514200. [DOI] [PubMed] [Google Scholar]
- de Silva A. M., Telford S. R., 3rd, Brunet L. R., Barthold S. W., Fikrig E. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med. 1996 Jan 1;183(1):271–275. doi: 10.1084/jem.183.1.271. [DOI] [PMC free article] [PubMed] [Google Scholar]