Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 May 15;101(10):2251–2256. doi: 10.1172/JCI1778

Postabsorptive respiratory quotient and insulin-stimulated glucose storage rate in nondiabetic pima indians are related To glycogen synthase fractional activity in cultured myoblasts.

D M Mott 1, R E Pratley 1, C Bogardus 1
PMCID: PMC508813  PMID: 9593781

Abstract

A decreased ratio of fat to carbohydrate oxidation rate (an elevated respiratory quotient) predicts the development of obesity. Skeletal muscle accounts for a major fraction of total body lipid oxidation and is the principle site for reduced glucose storage in insulin-resistant subjects. The potentially important role that muscle has in promoting obesity or insulin resistance may be based on metabolic control intrinsic to skeletal muscle. Cultured skeletal muscle provides a system to examine the importance of inherent metabolic traits in muscle biopsies from obese and insulin-resistant subjects. Glycogen synthase fractional activity (GSFA) was measured in cultured myoblasts from 21 Pima Indians characterized in vivo using indirect calorimetry and a euglycemic hyperinsulinemic clamp. Basal GSFA in cultured muscle cells is inversely correlated with postabsorptive respiratory quotient of the muscle donors (r = -0.66, P = 0.001) and with in vivo high dose insulin-stimulated glucose storage rates (r = 0.47, P = 0.04). These results indicate that the postabsorptive respiratory quotients and insulin-mediated glucose storage rates in vivo share a common regulatory mechanism with GSFA in cultured myoblasts. Abnormal regulation of glycogen synthase phosphorylation state may be an intrinsic defect in skeletal muscle associated with obesity and insulin resistance.

Full Text

The Full Text of this article is available as a PDF (154.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boden G., Jadali F., White J., Liang Y., Mozzoli M., Chen X., Coleman E., Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991 Sep;88(3):960–966. doi: 10.1172/JCI115399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bogardus C., Lillioja S., Bennett P. H. Pathogenesis of NIDDM in Pima Indians. Diabetes Care. 1991 Jul;14(7):685–690. doi: 10.2337/diacare.14.7.685. [DOI] [PubMed] [Google Scholar]
  3. Bogardus C., Lillioja S., Stone K., Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man. J Clin Invest. 1984 Apr;73(4):1185–1190. doi: 10.1172/JCI111304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen S., Ogawa A., Ohneda M., Unger R. H., Foster D. W., McGarry J. D. More direct evidence for a malonyl-CoA-carnitine palmitoyltransferase I interaction as a key event in pancreatic beta-cell signaling. Diabetes. 1994 Jul;43(7):878–883. doi: 10.2337/diab.43.7.878. [DOI] [PubMed] [Google Scholar]
  5. Dent P., Lavoinne A., Nakielny S., Caudwell F. B., Watt P., Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature. 1990 Nov 22;348(6299):302–308. doi: 10.1038/348302a0. [DOI] [PubMed] [Google Scholar]
  6. Felley C. P., Felley E. M., van Melle G. D., Frascarolo P., Jéquier E., Felber J. P. Impairment of glucose disposal by infusion of triglycerides in humans: role of glycemia. Am J Physiol. 1989 Jun;256(6 Pt 1):E747–E752. doi: 10.1152/ajpendo.1989.256.6.E747. [DOI] [PubMed] [Google Scholar]
  7. Froidevaux F., Schutz Y., Christin L., Jéquier E. Energy expenditure in obese women before and during weight loss, after refeeding, and in the weight-relapse period. Am J Clin Nutr. 1993 Jan;57(1):35–42. doi: 10.1093/ajcn/57.1.35. [DOI] [PubMed] [Google Scholar]
  8. Guinovart J. J., Salavert A., Massagué J., Ciudad C. J., Salsas E., Itarte E. Glycogen synthase: a new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett. 1979 Oct 15;106(2):284–288. doi: 10.1016/0014-5793(79)80515-3. [DOI] [PubMed] [Google Scholar]
  9. Henry R. R., Abrams L., Nikoulina S., Ciaraldi T. P. Insulin action and glucose metabolism in nondiabetic control and NIDDM subjects. Comparison using human skeletal muscle cell cultures. Diabetes. 1995 Aug;44(8):936–946. doi: 10.2337/diab.44.8.936. [DOI] [PubMed] [Google Scholar]
  10. Henry R. R., Ciaraldi T. P., Abrams-Carter L., Mudaliar S., Park K. S., Nikoulina S. E. Glycogen synthase activity is reduced in cultured skeletal muscle cells of non-insulin-dependent diabetes mellitus subjects. Biochemical and molecular mechanisms. J Clin Invest. 1996 Sep 1;98(5):1231–1236. doi: 10.1172/JCI118906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heydrick S. J., Ruderman N. B., Kurowski T. G., Adams H. B., Chen K. S. Enhanced stimulation of diacylglycerol and lipid synthesis by insulin in denervated muscle. Altered protein kinase C activity and possible link to insulin resistance. Diabetes. 1991 Dec;40(12):1707–1711. doi: 10.2337/diab.40.12.1707. [DOI] [PubMed] [Google Scholar]
  12. Hidaka H., Howard B. V., Kosmakos F. C., Fields R. M., Craig J. W., Bennett P. H., Larner J. Insulin stimulation of glycogen synthase in cultured human diploid fibroblasts. Diabetes. 1980 Oct;29(10):806–810. doi: 10.2337/diacare.20.10.806. [DOI] [PubMed] [Google Scholar]
  13. Howard B. V., Hidaka H., Ishibashi F., Fields R. M., Bennett P. H. Type II diabetes and insulin resistance. Evidence of lack of inherent cellular defects in insulin sensitivity. Diabetes. 1981 Jul;30(7):562–567. doi: 10.2337/diab.30.7.562. [DOI] [PubMed] [Google Scholar]
  14. Kelley D. E., Mokan M., Simoneau J. A., Mandarino L. J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993 Jul;92(1):91–98. doi: 10.1172/JCI116603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kida Y., Esposito-Del Puente A., Bogardus C., Mott D. M. Insulin resistance is associated with reduced fasting and insulin-stimulated glycogen synthase phosphatase activity in human skeletal muscle. J Clin Invest. 1990 Feb;85(2):476–481. doi: 10.1172/JCI114462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kida Y., Raz I., Maeda R., Nyomba B. L., Stone K., Bogardus C., Sommercorn J., Mott D. M. Defective insulin response of phosphorylase phosphatase in insulin-resistant humans. J Clin Invest. 1992 Feb;89(2):610–617. doi: 10.1172/JCI115627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lillioja S., Bogardus C. Obesity and insulin resistance: lessons learned from the Pima Indians. Diabetes Metab Rev. 1988 Aug;4(5):517–540. doi: 10.1002/dmr.5610040508. [DOI] [PubMed] [Google Scholar]
  18. Lillioja S., Mott D. M., Zawadzki J. K., Young A. A., Abbott W. G., Knowler W. C., Bennett P. H., Moll P., Bogardus C. In vivo insulin action is familial characteristic in nondiabetic Pima Indians. Diabetes. 1987 Nov;36(11):1329–1335. doi: 10.2337/diab.36.11.1329. [DOI] [PubMed] [Google Scholar]
  19. Mandarino L. J., Consoli A., Jain A., Kelley D. E. Interaction of carbohydrate and fat fuels in human skeletal muscle: impact of obesity and NIDDM. Am J Physiol. 1996 Mar;270(3 Pt 1):E463–E470. doi: 10.1152/ajpendo.1996.270.3.E463. [DOI] [PubMed] [Google Scholar]
  20. Pan D. A., Lillioja S., Kriketos A. D., Milner M. R., Baur L. A., Bogardus C., Jenkins A. B., Storlien L. H. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997 Jun;46(6):983–988. doi: 10.2337/diab.46.6.983. [DOI] [PubMed] [Google Scholar]
  21. Phillips D. I., Caddy S., Ilic V., Fielding B. A., Frayn K. N., Borthwick A. C., Taylor R. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism. 1996 Aug;45(8):947–950. doi: 10.1016/s0026-0495(96)90260-7. [DOI] [PubMed] [Google Scholar]
  22. Roach P. J., Larner J. Rabbit skeletal muscle glycogen synthase. II. Enzyme phosphorylation state and effector concentrations as interacting control parameters. J Biol Chem. 1976 Apr 10;251(7):1920–1925. [PubMed] [Google Scholar]
  23. STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
  24. Saha A. K., Kurowski T. G., Colca J. R., Ruderman N. B. Lipid abnormalities in tissues of the KKAy mouse: effects of pioglitazone on malonyl-CoA and diacylglycerol. Am J Physiol. 1994 Jul;267(1 Pt 1):E95–101. doi: 10.1152/ajpendo.1994.267.1.E95. [DOI] [PubMed] [Google Scholar]
  25. Seidell J. C., Muller D. C., Sorkin J. D., Andres R. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: the Baltimore Longitudinal Study on Aging. Int J Obes Relat Metab Disord. 1992 Sep;16(9):667–674. [PubMed] [Google Scholar]
  26. Shulman G. I., Rothman D. L., Jue T., Stein P., DeFronzo R. A., Shulman R. G. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990 Jan 25;322(4):223–228. doi: 10.1056/NEJM199001253220403. [DOI] [PubMed] [Google Scholar]
  27. Smith R. L., Lawrence J. C., Jr Insulin action in denervated rat hemidiaphragms. Decreased hormonal stimulation of glycogen synthesis involves both glycogen synthase and glucose transport. J Biol Chem. 1984 Feb 25;259(4):2201–2207. [PubMed] [Google Scholar]
  28. Tataranni P. A., Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995 Oct;62(4):730–734. doi: 10.1093/ajcn/62.4.730. [DOI] [PubMed] [Google Scholar]
  29. Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
  30. Thompson D. B., Pratley R., Ossowski V. Human primary myoblast cell cultures from non-diabetic insulin resistant subjects retain defects in insulin action. J Clin Invest. 1996 Nov 15;98(10):2346–2350. doi: 10.1172/JCI119046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wade A. J., Marbut M. M., Round J. M. Muscle fibre type and aetiology of obesity. Lancet. 1990 Apr 7;335(8693):805–808. doi: 10.1016/0140-6736(90)90933-v. [DOI] [PubMed] [Google Scholar]
  32. Young A. A., Bogardus C., Wolfe-Lopez D., Mott D. M. Muscle glycogen synthesis and disposition of infused glucose in humans with reduced rates of insulin-mediated carbohydrate storage. Diabetes. 1988 Mar;37(3):303–308. doi: 10.2337/diab.37.3.303. [DOI] [PubMed] [Google Scholar]
  33. Zurlo F., Larson K., Bogardus C., Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest. 1990 Nov;86(5):1423–1427. doi: 10.1172/JCI114857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zurlo F., Lillioja S., Esposito-Del Puente A., Nyomba B. L., Raz I., Saad M. F., Swinburn B. A., Knowler W. C., Bogardus C., Ravussin E. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol. 1990 Nov;259(5 Pt 1):E650–E657. doi: 10.1152/ajpendo.1990.259.5.E650. [DOI] [PubMed] [Google Scholar]
  35. Zurlo F., Nemeth P. M., Choksi R. M., Sesodia S., Ravussin E. Whole-body energy metabolism and skeletal muscle biochemical characteristics. Metabolism. 1994 Apr;43(4):481–486. doi: 10.1016/0026-0495(94)90081-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES