Abstract
Inhaled nitric oxide (NO) is being used more and more in intensive care units as a modality to improve the outcome of patients with pulmonary complications. Our objective was to demonstrate that inhaled NO could impact upon a distally inflamed microvasculature-improving perfusion, leukocyte adhesive interactions, and endothelial dysfunction. Using intravital microscopy to visualize ischemia/reperfusion of postcapillary venules, we were able to demonstrate that the reduction in perfusion, the dramatic increase in leukocyte rolling, adhesion, and emigration, and the endothelial dysfunction could all be significantly abrogated with 80 ppm, but not 20 ppm inhaled NO. Perfusing whole blood directly over an inert P-selectin and CD18 ligand substratum incorporated in a flow chamber recruited the same number of rolling and adhering leukocytes from NO-ventilated and non-NO-ventilated animals, suggesting that inhaled NO was not directly affecting leukocytes. To demonstrate that inhaled NO was actually reaching the peripheral microvasculature in vivo, we applied a NO synthase inhibitor locally to the feline mesentery and demonstrated that the vasoconstriction, as well as leukocyte recruitment, were essentially abolished by inhaled NO, suggesting that a NO-depleted peripheral microvasculature could be replenished with inhaled NO in vivo. Finally, inhaled NO at the same concentration that was effective in ischemia/reperfusion did not affect vascular alterations, leukocyte recruitment, and endothelial dysfunction associated with endotoxemia in the feline mesentery. In conclusion, our data for the first time demonstrate a role for inhaled NO as a therapeutic delivery system to the peripheral microvasculature, showing tremendous efficacy as an antiadhesive, antivasoconstrictive, and antipermeabilizing molecule in NO-depleted tissues, but not normal microvessels or vessels that have an abundance of NO (LPS-treated). The notion that blood borne molecules have NO carrying capacity is conceptually consistent with our observations.
Full Text
The Full Text of this article is available as a PDF (275.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrie C., Bloch K. D., Moreno P. R., Hurford W. E., Guerrero J. L., Holt R., Zapol W. M., Gold H. K., Semigran M. J. Inhaled nitric oxide increases coronary artery patency after thrombolysis. Circulation. 1996 Oct 15;94(8):1919–1926. doi: 10.1161/01.cir.94.8.1919. [DOI] [PubMed] [Google Scholar]
- Bloomfield G. L., Sweeney L. B., Fisher B. J., Blocher C. R., Sholley M. M., Sugerman H. J., Fowler A. A., 3rd Delayed administration of inhaled nitric oxide preserves alveolar-capillary membrane integrity in porcine gram-negative sepsis. Arch Surg. 1997 Jan;132(1):65–75. doi: 10.1001/archsurg.1997.01430250067016. [DOI] [PubMed] [Google Scholar]
- Buttrum S. M., Hatton R., Nash G. B. Selectin-mediated rolling of neutrophils on immobilized platelets. Blood. 1993 Aug 15;82(4):1165–1174. [PubMed] [Google Scholar]
- De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A., Jr, Shin W. S., Liao J. K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995 Jul;96(1):60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards A. D. The pharmacology of inhaled nitric oxide. Arch Dis Child Fetal Neonatal Ed. 1995 Mar;72(2):F127–F130. doi: 10.1136/fn.72.2.f127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaboury J. P., Niu X. F., Kubes P. Nitric oxide inhibits numerous features of mast cell-induced inflammation. Circulation. 1996 Jan 15;93(2):318–326. doi: 10.1161/01.cir.93.2.318. [DOI] [PubMed] [Google Scholar]
- Gauthier T. W., Davenpeck K. L., Lefer A. M. Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchnic ischemia-reperfusion. Am J Physiol. 1994 Oct;267(4 Pt 1):G562–G568. doi: 10.1152/ajpgi.1994.267.4.G562. [DOI] [PubMed] [Google Scholar]
- Gessler P., Nebe T., Birle A., Mueller W., Kachel W. A new side effect of inhaled nitric oxide in neonates and infants with pulmonary hypertension: functional impairment of the neutrophil respiratory burst. Intensive Care Med. 1996 Mar;22(3):252–258. doi: 10.1007/BF01712246. [DOI] [PubMed] [Google Scholar]
- House S. D., Lipowsky H. H. Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res. 1987 Nov;34(3):363–379. doi: 10.1016/0026-2862(87)90068-9. [DOI] [PubMed] [Google Scholar]
- Jia L., Bonaventura C., Bonaventura J., Stamler J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature. 1996 Mar 21;380(6571):221–226. doi: 10.1038/380221a0. [DOI] [PubMed] [Google Scholar]
- Kanwar S., Johnston B., Kubes P. Leukotriene C4/D4 induces P-selectin and sialyl Lewis(x)-dependent alterations in leukocyte kinetics in vivo. Circ Res. 1995 Nov;77(5):879–887. doi: 10.1161/01.res.77.5.879. [DOI] [PubMed] [Google Scholar]
- Kavanagh B. P., Pearl R. G. Inhaled nitric oxide in anesthesia and critical care medicine. Int Anesthesiol Clin. 1995 Winter;33(1):181–210. [PubMed] [Google Scholar]
- Keaney J. F., Jr, Simon D. I., Stamler J. S., Jaraki O., Scharfstein J., Vita J. A., Loscalzo J. NO forms an adduct with serum albumin that has endothelium-derived relaxing factor-like properties. J Clin Invest. 1993 Apr;91(4):1582–1589. doi: 10.1172/JCI116364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubes P., Ibbotson G., Russell J., Wallace J. L., Granger D. N. Role of platelet-activating factor in ischemia/reperfusion-induced leukocyte adherence. Am J Physiol. 1990 Aug;259(2 Pt 1):G300–G305. doi: 10.1152/ajpgi.1990.259.2.G300. [DOI] [PubMed] [Google Scholar]
- Kubes P., Jutila M., Payne D. Therapeutic potential of inhibiting leukocyte rolling in ischemia/reperfusion. J Clin Invest. 1995 Jun;95(6):2510–2519. doi: 10.1172/JCI117952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubes P., Reinhardt P. H., Payne D., Woodman R. C. Excess nitric oxide does not cause cellular, vascular, or mucosal dysfunction in the cat small intestine. Am J Physiol. 1995 Jul;269(1 Pt 1):G34–G41. doi: 10.1152/ajpgi.1995.269.1.G34. [DOI] [PubMed] [Google Scholar]
- Kubes P., Sihota E., Hickey M. J. Endogenous but not exogenous nitric oxide decreases TNF-alpha-induced leukocyte rolling. Am J Physiol. 1997 Sep;273(3 Pt 1):G628–G635. doi: 10.1152/ajpgi.1997.273.3.G628. [DOI] [PubMed] [Google Scholar]
- Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kurose I., Wolf R., Grisham M. B., Aw T. Y., Specian R. D., Granger D. N. Microvascular responses to inhibition of nitric oxide production. Role of active oxidants. Circ Res. 1995 Jan;76(1):30–39. doi: 10.1161/01.res.76.1.30. [DOI] [PubMed] [Google Scholar]
- Kurose I., Wolf R., Grisham M. B., Granger D. N. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994 Mar;74(3):376–382. doi: 10.1161/01.res.74.3.376. [DOI] [PubMed] [Google Scholar]
- Lawrence M. B., Smith C. W., Eskin S. G., McIntire L. V. Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood. 1990 Jan 1;75(1):227–237. [PubMed] [Google Scholar]
- Lee J. S., Adrie C., Jacob H. J., Roberts J. D., Jr, Zapol W. M., Bloch K. D. Chronic inhalation of nitric oxide inhibits neointimal formation after balloon-induced arterial injury. Circ Res. 1996 Feb;78(2):337–342. doi: 10.1161/01.res.78.2.337. [DOI] [PubMed] [Google Scholar]
- Lefer A. M., Tsao P. S., Lefer D. J., Ma X. L. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J. 1991 Apr;5(7):2029–2034. doi: 10.1096/fasebj.5.7.2010056. [DOI] [PubMed] [Google Scholar]
- Liu S. F., Adcock I. M., Old R. W., Barnes P. J., Evans T. W. Differential regulation of the constitutive and inducible nitric oxide synthase mRNA by lipopolysaccharide treatment in vivo in the rat. Crit Care Med. 1996 Jul;24(7):1219–1225. doi: 10.1097/00003246-199607000-00026. [DOI] [PubMed] [Google Scholar]
- Lu J. L., Schmiege L. M., 3rd, Kuo L., Liao J. C. Downregulation of endothelial constitutive nitric oxide synthase expression by lipopolysaccharide. Biochem Biophys Res Commun. 1996 Aug 5;225(1):1–5. doi: 10.1006/bbrc.1996.1121. [DOI] [PubMed] [Google Scholar]
- Ma X. L., Weyrich A. S., Lefer D. J., Lefer A. M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993 Feb;72(2):403–412. doi: 10.1161/01.res.72.2.403. [DOI] [PubMed] [Google Scholar]
- May G. R., Crook P., Moore P. K., Page C. P. The role of nitric oxide as an endogenous regulator of platelet and neutrophil activation within the pulmonary circulation of the rabbit. Br J Pharmacol. 1991 Mar;102(3):759–763. doi: 10.1111/j.1476-5381.1991.tb12246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishida J., McCuskey R. S., McDonnell D., Fox E. S. Protective role of NO in hepatic microcirculatory dysfunction during endotoxemia. Am J Physiol. 1994 Dec;267(6 Pt 1):G1135–G1141. doi: 10.1152/ajpgi.1994.267.6.G1135. [DOI] [PubMed] [Google Scholar]
- Niu X. F., Smith C. W., Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res. 1994 Jun;74(6):1133–1140. doi: 10.1161/01.res.74.6.1133. [DOI] [PubMed] [Google Scholar]
- Ostrovsky L., King A. J., Bond S., Mitchell D., Lorant D. E., Zimmerman G. A., Larsen R., Niu X. F., Kubes P. A juxtacrine mechanism for neutrophil adhesion on platelets involves platelet-activating factor and a selectin-dependent activation process. Blood. 1998 Apr 15;91(8):3028–3036. [PubMed] [Google Scholar]
- Payne D., Kubes P. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol. 1993 Jul;265(1 Pt 1):G189–G195. doi: 10.1152/ajpgi.1993.265.1.G189. [DOI] [PubMed] [Google Scholar]
- Roberts J. D., Jr, Fineman J. R., Morin F. C., 3rd, Shaul P. W., Rimar S., Schreiber M. D., Polin R. A., Zwass M. S., Zayek M. M., Gross I. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med. 1997 Feb 27;336(9):605–610. doi: 10.1056/NEJM199702273360902. [DOI] [PubMed] [Google Scholar]
- Rosenberg A. A., Kinsella J. P., Abman S. H. Cerebral hemodynamics and distribution of left ventricular output during inhalation of nitric oxide. Crit Care Med. 1995 Aug;23(8):1391–1397. doi: 10.1097/00003246-199508000-00013. [DOI] [PubMed] [Google Scholar]
- Stamler J. S., Simon D. I., Osborne J. A., Mullins M. E., Jaraki O., Michel T., Singel D. J., Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):444–448. doi: 10.1073/pnas.89.1.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi Y., Kobayashi H., Tanaka N., Sato T., Takizawa N., Tomita T. Nitrosyl hemoglobin in blood of normoxic and hypoxic sheep during nitric oxide inhalation. Am J Physiol. 1998 Jan;274(1 Pt 2):H349–H357. doi: 10.1152/ajpheart.1998.274.1.H349. [DOI] [PubMed] [Google Scholar]
- Tsao P. S., Buitrago R., Chan J. R., Cooke J. P. Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation. 1996 Oct 1;94(7):1682–1689. doi: 10.1161/01.cir.94.7.1682. [DOI] [PubMed] [Google Scholar]
- Weber C., Springer T. A. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor. J Clin Invest. 1997 Oct 15;100(8):2085–2093. doi: 10.1172/JCI119742. [DOI] [PMC free article] [PubMed] [Google Scholar]