Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 1;101(11):2528–2539. doi: 10.1172/JCI2401

Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus.

J Seufert 1, G C Weir 1, J F Habener 1
PMCID: PMC508842  PMID: 9616224

Abstract

Impairment of insulin secretion due to prolonged hyperglycemia is believed to contribute to the manifestation of diabetes mellitus, often referred to as glucose toxicity of pancreatic beta cells. In addition, impaired beta cell function has been associated with elevated islet triglyceride content (lipotoxicity). Impaired functions of the transactivating factors islet duodenum homeobox-1 (IDX-1) and RIPE3b-binding proteins have been implicated in the pathological downregulation of insulin gene transcription by high glucose levels in pancreatic beta cell lines in vitro, and, similarly, the exposure of pancreatic islets to fatty acids decreases IDX-1 expression. Previously, we identified the basic leucine zipper transcription factor CCAAT/enhancer-binding protein beta (C/ EBPbeta) as an inhibitor of insulin gene transcription in pancreatic beta cells and showed that the expression of C/EBPbeta is upregulated in insulinoma-derived beta cell lines by sustained high glucose concentrations. Here we describe the regulation of the expression of IDX-1, C/EBPbeta, and insulin at the mRNA and protein levels in pancreatic islets in animal models of diabetes mellitus. Concomitant with a downregulation of IDX-1 and insulin expression, C/EBPbeta is upregulated in association with the manifestation of hyperglycemia during the development of diabetes in the Zucker diabetic fatty (fa/fa) rat and in the 90% pancreatectomy rat model of diabetes. This regulation is demonstrated to influence both the amount of cellular protein and the level of steady state messenger RNA. Our findings indicate that the differential dysregulation of both IDX-1 and C/EBPbeta, in response to sustained hyperglycemia or hyperlipidemia, may be involved in the impairment of insulin gene expression during the manifestation of diabetes mellitus.

Full Text

The Full Text of this article is available as a PDF (997.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alam T., An M. R., Papaconstantinou J. Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. J Biol Chem. 1992 Mar 15;267(8):5021–5024. [PubMed] [Google Scholar]
  2. Bonner-Weir S., Trent D. F., Weir G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. 1983 Jun;71(6):1544–1553. doi: 10.1172/JCI110910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chan S. J., Noyes B. E., Agarwal K. L., Steiner D. F. Construction and selection of recombinant plasmids containing full-length complementary DNAs corresponding to rat insulins I and II. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5036–5040. doi: 10.1073/pnas.76.10.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen G., Koyama K., Yuan X., Lee Y., Zhou Y. T., O'Doherty R., Newgard C. B., Unger R. H. Disappearance of body fat in normal rats induced by adenovirus-mediated leptin gene therapy. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14795–14799. doi: 10.1073/pnas.93.25.14795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Eizirik D. L., Korbutt G. S., Hellerström C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest. 1992 Oct;90(4):1263–1268. doi: 10.1172/JCI115989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fehmann H. C., Habener J. F. Homologous desensitization of the insulinotropic glucagon-like peptide-I (7-37) receptor on insulinoma (HIT-T15) cells. Endocrinology. 1991 Jun;128(6):2880–2888. doi: 10.1210/endo-128-6-2880. [DOI] [PubMed] [Google Scholar]
  8. Gotoh M., Maki T., Satomi S., Porter J., Bonner-Weir S., O'Hara C. J., Monaco A. P. Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation. 1987 May;43(5):725–730. doi: 10.1097/00007890-198705000-00024. [DOI] [PubMed] [Google Scholar]
  9. Gremlich S., Bonny C., Waeber G., Thorens B. Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J Biol Chem. 1997 Nov 28;272(48):30261–30269. doi: 10.1074/jbc.272.48.30261. [DOI] [PubMed] [Google Scholar]
  10. Grupping A. Y., Cnop M., Van Schravendijk C. F., Hannaert J. C., Van Berkel T. J., Pipeleers D. G. Low density lipoprotein binding and uptake by human and rat islet beta cells. Endocrinology. 1997 Oct;138(10):4064–4068. doi: 10.1210/endo.138.10.5420. [DOI] [PubMed] [Google Scholar]
  11. Hirose H., Lee Y. H., Inman L. R., Nagasawa Y., Johnson J. H., Unger R. H. Defective fatty acid-mediated beta-cell compensation in Zucker diabetic fatty rats. Pathogenic implications for obesity-dependent diabetes. J Biol Chem. 1996 Mar 8;271(10):5633–5637. doi: 10.1074/jbc.271.10.5633. [DOI] [PubMed] [Google Scholar]
  12. Iida M., Murakami T., Ishida K., Mizuno A., Kuwajima M., Shima K. Substitution at codon 269 (glutamine --> proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun. 1996 Jul 16;224(2):597–604. doi: 10.1006/bbrc.1996.1070. [DOI] [PubMed] [Google Scholar]
  13. Jonsson J., Carlsson L., Edlund T., Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994 Oct 13;371(6498):606–609. doi: 10.1038/371606a0. [DOI] [PubMed] [Google Scholar]
  14. Kajimoto Y., Watada H., Matsuoka T. a., Kaneto H., Fujitani Y., Miyazaki J., Yamasaki Y. Suppression of transcription factor PDX-1/IPF1/STF-1/IDX-1 causes no decrease in insulin mRNA in MIN6 cells. J Clin Invest. 1997 Oct 1;100(7):1840–1846. doi: 10.1172/JCI119712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karlsson O., Edlund T., Moss J. B., Rutter W. J., Walker M. D. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8819–8823. doi: 10.1073/pnas.84.24.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kieffer T. J., Heller R. S., Unson C. G., Weir G. C., Habener J. F. Distribution of glucagon receptors on hormone-specific endocrine cells of rat pancreatic islets. Endocrinology. 1996 Nov;137(11):5119–5125. doi: 10.1210/endo.137.11.8895386. [DOI] [PubMed] [Google Scholar]
  17. Koyama K., Chen G., Lee Y., Unger R. H. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol. 1997 Oct;273(4 Pt 1):E708–E713. doi: 10.1152/ajpendo.1997.273.4.E708. [DOI] [PubMed] [Google Scholar]
  18. Koyama K., Chen G., Wang M. Y., Lee Y., Shimabukuro M., Newgard C. B., Unger R. H. beta-cell function in normal rats made chronically hyperleptinemic by adenovirus-leptin gene therapy. Diabetes. 1997 Aug;46(8):1276–1280. doi: 10.2337/diab.46.8.1276. [DOI] [PubMed] [Google Scholar]
  19. Leahy J. L., Bonner-Weir S., Weir G. C. Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care. 1992 Mar;15(3):442–455. doi: 10.2337/diacare.15.3.442. [DOI] [PubMed] [Google Scholar]
  20. Leahy J. L., Bonner-Weir S., Weir G. C. Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. J Clin Invest. 1988 May;81(5):1407–1414. doi: 10.1172/JCI113470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leahy J. L., Weir G. C. Beta-cell dysfunction in hyperglycaemic rat models: recovery of glucose-induced insulin secretion with lowering of the ambient glucose level. Diabetologia. 1991 Sep;34(9):640–647. doi: 10.1007/BF00400993. [DOI] [PubMed] [Google Scholar]
  22. Leahy J. L., Weir G. C. Evolution of abnormal insulin secretory responses during 48-h in vivo hyperglycemia. Diabetes. 1988 Feb;37(2):217–222. doi: 10.2337/diab.37.2.217. [DOI] [PubMed] [Google Scholar]
  23. Lee Y., Hirose H., Ohneda M., Johnson J. H., McGarry J. D., Unger R. H. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10878–10882. doi: 10.1073/pnas.91.23.10878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee Y., Hirose H., Zhou Y. T., Esser V., McGarry J. D., Unger R. H. Increased lipogenic capacity of the islets of obese rats: a role in the pathogenesis of NIDDM. Diabetes. 1997 Mar;46(3):408–413. doi: 10.2337/diab.46.3.408. [DOI] [PubMed] [Google Scholar]
  25. Ling Z., Kiekens R., Mahler T., Schuit F. C., Pipeleers-Marichal M., Sener A., Kloppel G., Malaisse W. J., Pipeleers D. G. Effects of chronically elevated glucose levels on the functional properties of rat pancreatic beta-cells. Diabetes. 1996 Dec;45(12):1774–1782. doi: 10.2337/diab.45.12.1774. [DOI] [PubMed] [Google Scholar]
  26. Ling Z., Pipeleers D. G. Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J Clin Invest. 1996 Dec 15;98(12):2805–2812. doi: 10.1172/JCI119108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lu M., Seufert J., Habener J. F. Pancreatic beta-cell-specific repression of insulin gene transcription by CCAAT/enhancer-binding protein beta. Inhibitory interactions with basic helix-loop-helix transcription factor E47. J Biol Chem. 1997 Nov 7;272(45):28349–28359. doi: 10.1074/jbc.272.45.28349. [DOI] [PubMed] [Google Scholar]
  28. Mandrup S., Lane M. D. Regulating adipogenesis. J Biol Chem. 1997 Feb 28;272(9):5367–5370. doi: 10.1074/jbc.272.9.5367. [DOI] [PubMed] [Google Scholar]
  29. Milburn J. L., Jr, Hirose H., Lee Y. H., Nagasawa Y., Ogawa A., Ohneda M., BeltrandelRio H., Newgard C. B., Johnson J. H., Unger R. H. Pancreatic beta-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J Biol Chem. 1995 Jan 20;270(3):1295–1299. doi: 10.1074/jbc.270.3.1295. [DOI] [PubMed] [Google Scholar]
  30. Miller C. P., McGehee R. E., Jr, Habener J. F. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 1994 Mar 1;13(5):1145–1156. doi: 10.1002/j.1460-2075.1994.tb06363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moran A., Zhang H. J., Olson L. K., Harmon J. S., Poitout V., Robertson R. P. Differentiation of glucose toxicity from beta cell exhaustion during the evolution of defective insulin gene expression in the pancreatic islet cell line, HIT-T15. J Clin Invest. 1997 Feb 1;99(3):534–539. doi: 10.1172/JCI119190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Müller C., Kowenz-Leutz E., Grieser-Ade S., Graf T., Leutz A. NF-M (chicken C/EBP beta) induces eosinophilic differentiation and apoptosis in a hematopoietic progenitor cell line. EMBO J. 1995 Dec 15;14(24):6127–6135. doi: 10.1002/j.1460-2075.1995.tb00303.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ohlsson H., Edlund T. Sequence-specific interactions of nuclear factors with the insulin gene enhancer. Cell. 1986 Apr 11;45(1):35–44. doi: 10.1016/0092-8674(86)90535-0. [DOI] [PubMed] [Google Scholar]
  34. Olson L. K., Qian J., Poitout V. Glucose rapidly and reversibly decreases INS-1 cell insulin gene transcription via decrements in STF-1 and C1 activator transcription factor activity. Mol Endocrinol. 1998 Feb;12(2):207–219. doi: 10.1210/mend.12.2.0066. [DOI] [PubMed] [Google Scholar]
  35. Olson L. K., Redmon J. B., Towle H. C., Robertson R. P. Chronic exposure of HIT cells to high glucose concentrations paradoxically decreases insulin gene transcription and alters binding of insulin gene regulatory protein. J Clin Invest. 1993 Jul;92(1):514–519. doi: 10.1172/JCI116596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Olson L. K., Sharma A., Peshavaria M., Wright C. V., Towle H. C., Rodertson R. P., Stein R. Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9127–9131. doi: 10.1073/pnas.92.20.9127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Orland M. J., Chyn R., Permutt M. A. Modulation of proinsulin messenger RNA after partial pancreatectomy in rats. Relationships to glucose homeostasis. J Clin Invest. 1985 Jun;75(6):2047–2055. doi: 10.1172/JCI111924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peers B., Leonard J., Sharma S., Teitelman G., Montminy M. R. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol Endocrinol. 1994 Dec;8(12):1798–1806. doi: 10.1210/mend.8.12.7708065. [DOI] [PubMed] [Google Scholar]
  39. Pei D. Q., Shih C. H. Transcriptional activation and repression by cellular DNA-binding protein C/EBP. J Virol. 1990 Apr;64(4):1517–1522. doi: 10.1128/jvi.64.4.1517-1522.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Permutt A., Chirgwin J., Giddings S., Kakita K., Rotwein P. Insulin biosynthesis and diabetes mellitus. Clin Biochem. 1981 Oct;14(5):230–236. doi: 10.1016/s0009-9120(81)90940-1. [DOI] [PubMed] [Google Scholar]
  41. Phillips M. S., Liu Q., Hammond H. A., Dugan V., Hey P. J., Caskey C. J., Hess J. F. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996 May;13(1):18–19. doi: 10.1038/ng0596-18. [DOI] [PubMed] [Google Scholar]
  42. Poitout V., Olson L. K., Robertson R. P. Chronic exposure of betaTC-6 cells to supraphysiologic concentrations of glucose decreases binding of the RIPE3b1 insulin gene transcription activator. J Clin Invest. 1996 Feb 15;97(4):1041–1046. doi: 10.1172/JCI118496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Poitout V., Robertson R. P. An integrated view of beta-cell dysfunction in type-II diabetes. Annu Rev Med. 1996;47:69–83. doi: 10.1146/annurev.med.47.1.69. [DOI] [PubMed] [Google Scholar]
  44. Raught B., Liao W. S., Rosen J. M. Developmentally and hormonally regulated CCAAT/enhancer-binding protein isoforms influence beta-casein gene expression. Mol Endocrinol. 1995 Sep;9(9):1223–1232. doi: 10.1210/mend.9.9.7491114. [DOI] [PubMed] [Google Scholar]
  45. Robertson R. P., Olson L. K., Zhang H. J. Differentiating glucose toxicity from glucose desensitization: a new message from the insulin gene. Diabetes. 1994 Sep;43(9):1085–1089. doi: 10.2337/diab.43.9.1085. [DOI] [PubMed] [Google Scholar]
  46. Ron D., Habener J. F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 Mar;6(3):439–453. doi: 10.1101/gad.6.3.439. [DOI] [PubMed] [Google Scholar]
  47. Sharma A., Olson L. K., Robertson R. P., Stein R. The reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Mol Endocrinol. 1995 Sep;9(9):1127–1134. doi: 10.1210/mend.9.9.7491105. [DOI] [PubMed] [Google Scholar]
  48. Shimabukuro M., Koyama K., Chen G., Wang M. Y., Trieu F., Lee Y., Newgard C. B., Unger R. H. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4637–4641. doi: 10.1073/pnas.94.9.4637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shimabukuro M., Koyama K., Lee Y., Unger R. H. Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1beta cytotoxicity. J Clin Invest. 1997 Oct 1;100(7):1750–1754. doi: 10.1172/JCI119700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shimabukuro M., Ohneda M., Lee Y., Unger R. H. Role of nitric oxide in obesity-induced beta cell disease. J Clin Invest. 1997 Jul 15;100(2):290–295. doi: 10.1172/JCI119534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Steiner D. F., Chan S. J., Welsh J. M., Kwok S. C. Structure and evolution of the insulin gene. Annu Rev Genet. 1985;19:463–484. doi: 10.1146/annurev.ge.19.120185.002335. [DOI] [PubMed] [Google Scholar]
  52. Stoffers D. A., Ferrer J., Clarke W. L., Habener J. F. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997 Oct;17(2):138–139. doi: 10.1038/ng1097-138. [DOI] [PubMed] [Google Scholar]
  53. Stoffers D. A., Zinkin N. T., Stanojevic V., Clarke W. L., Habener J. F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet. 1997 Jan;15(1):106–110. doi: 10.1038/ng0197-106. [DOI] [PubMed] [Google Scholar]
  54. Takaya K., Ogawa Y., Isse N., Okazaki T., Satoh N., Masuzaki H., Mori K., Tamura N., Hosoda K., Nakao K. Molecular cloning of rat leptin receptor isoform complementary DNAs--identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun. 1996 Aug 5;225(1):75–83. doi: 10.1006/bbrc.1996.1133. [DOI] [PubMed] [Google Scholar]
  55. Tokuyama Y., Sturis J., DePaoli A. M., Takeda J., Stoffel M., Tang J., Sun X., Polonsky K. S., Bell G. I. Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes. 1995 Dec;44(12):1447–1457. doi: 10.2337/diab.44.12.1447. [DOI] [PubMed] [Google Scholar]
  56. Unger R. H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes. 1995 Aug;44(8):863–870. doi: 10.2337/diab.44.8.863. [DOI] [PubMed] [Google Scholar]
  57. Waeber G., Thompson N., Nicod P., Bonny C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol. 1996 Nov;10(11):1327–1334. doi: 10.1210/mend.10.11.8923459. [DOI] [PubMed] [Google Scholar]
  58. Wang M. Y., Koyama K., Shimabukuro M., Newgard C. B., Unger R. H. OB-Rb gene transfer to leptin-resistant islets reverses diabetogenic phenotype. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):714–718. doi: 10.1073/pnas.95.2.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Watada H., Kajimoto Y., Kaneto H., Matsuoka T., Fujitani Y., Miyazaki J. i., Yamasaki Y. Involvement of the homeodomain-containing transcription factor PDX-1 in islet amyloid polypeptide gene transcription. Biochem Biophys Res Commun. 1996 Dec 24;229(3):746–751. doi: 10.1006/bbrc.1996.1875. [DOI] [PubMed] [Google Scholar]
  60. Watada H., Kajimoto Y., Umayahara Y., Matsuoka T., Kaneto H., Fujitani Y., Kamada T., Kawamori R., Yamasaki Y. The human glucokinase gene beta-cell-type promoter: an essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells. Diabetes. 1996 Nov;45(11):1478–1488. doi: 10.2337/diab.45.11.1478. [DOI] [PubMed] [Google Scholar]
  61. Wedel A., Ziegler-Heitbrock H. W. The C/EBP family of transcription factors. Immunobiology. 1995 Jul;193(2-4):171–185. doi: 10.1016/s0171-2985(11)80541-3. [DOI] [PubMed] [Google Scholar]
  62. White D. W., Wang D. W., Chua S. C., Jr, Morgenstern J. P., Leibel R. L., Baumann H., Tartaglia L. A. Constitutive and impaired signaling of leptin receptors containing the Gln --> Pro extracellular domain fatty mutation. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10657–10662. doi: 10.1073/pnas.94.20.10657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zangen D. H., Bonner-Weir S., Lee C. H., Latimer J. B., Miller C. P., Habener J. F., Weir G. C. Reduced insulin, GLUT2, and IDX-1 in beta-cells after partial pancreatectomy. Diabetes. 1997 Feb;46(2):258–264. doi: 10.2337/diab.46.2.258. [DOI] [PubMed] [Google Scholar]
  64. Zhou Y. P., Grill V. E. Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J Clin Invest. 1994 Feb;93(2):870–876. doi: 10.1172/JCI117042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zhou Y. T., Shimabukuro M., Lee Y., Koyama K., Trieu F., Unger R. H. Leptin normalizes the impaired response of proinsulin mRNA to long chain fatty acids in heterozygous Zucker diabetic fatty rats. J Biol Chem. 1997 Oct 10;272(41):25648–25651. doi: 10.1074/jbc.272.41.25648. [DOI] [PubMed] [Google Scholar]
  66. Zimmermann K., Mannhalter J. W. Technical aspects of quantitative competitive PCR. Biotechniques. 1996 Aug;21(2):268-72, 274-9. doi: 10.2144/96212rv01. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES