Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 1;101(11):2540–2549. doi: 10.1172/JCI1404

Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.

J L Schwachtgen 1, P Houston 1, C Campbell 1, V Sukhatme 1, M Braddock 1
PMCID: PMC508843  PMID: 9616225

Abstract

The primary response transcription factor, early growth response-1 (Egr-1), is rapidly activated by a variety of extracellular stimuli. Egr-1 binds to a sequence found in the promoters of genes involved in vascular injury, such as PDGF-A and tissue factor, and trans-activates their expression in endothelial cells in response to fluid shear stress. Here we show that egr-1 mRNA is increased after 30 min of flow in human aortic endothelial cell and HeLa cell cultures. Transient transfection of HeLa cells with reporter gene constructs driven by the murine or human egr-1 5' flanking sequence revealed a five- and ninefold induction, respectively, in transcriptional activity after exposure to a shear stress of 5 dynes/cm2 for 3 h. Deletion of sequences in the murine promoter containing two AP1 sites and an inhibitory Egr-1 binding sequence, did not reduce shear stress inducibility. However, progressive deletion of five serum response elements, reduced both the basal promoter activity and its capacity to be activated by shear stress. Further examination indicated that the three upstream serum response elements are predominantly responsible for shear stress activation of the egr-1 promoter. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase-1 inhibited shear stress activation of egr-1. We suggest that egr-1 activation by shear stress involves activation of Elk-1 but not c-jun activity. These data, which are consistent with previous findings for shear mediated signaling via the mitogen-activated protein kinase cascade, now implicate shear modulation of the Egr-1 transcription factor in this pathway.

Full Text

The Full Text of this article is available as a PDF (273.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandropoulos K., Qureshi S. A., Rim M., Sukhatme V. P., Foster D. A. v-Fps-responsiveness in the Egr-1 promoter is mediated by serum response elements. Nucleic Acids Res. 1992 May 11;20(9):2355–2359. doi: 10.1093/nar/20.9.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando J., Tsuboi H., Korenaga R., Takahashi K., Kosaki K., Isshiki M., Tojo T., Takada Y., Kamiya A. Differential display and cloning of shear stress-responsive messenger RNAs in human endothelial cells. Biochem Biophys Res Commun. 1996 Aug 14;225(2):347–351. doi: 10.1006/bbrc.1996.1178. [DOI] [PubMed] [Google Scholar]
  3. Berk B. C., Corson M. A., Peterson T. E., Tseng H. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: a hypothesis for calcium-dependent and calcium-independent events activated by flow. J Biomech. 1995 Dec;28(12):1439–1450. doi: 10.1016/0021-9290(95)00092-5. [DOI] [PubMed] [Google Scholar]
  4. Bodin P., Milner P., Marshall J., Burnstock G. Cytokines suppress the shear stress-stimulated release of vasoactive peptides from human endothelial cells. Peptides. 1995;16(8):1433–1438. doi: 10.1016/0196-9781(95)02040-3. [DOI] [PubMed] [Google Scholar]
  5. Cao X., Mahendran R., Guy G. R., Tan Y. H. Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem. 1993 Aug 15;268(23):16949–16957. [PubMed] [Google Scholar]
  6. Choi A. M., Tucker R. W., Carlson S. G., Weigand G., Holbrook N. J. Calcium mediates expression of stress-response genes in prostaglandin A2-induced growth arrest. FASEB J. 1994 Oct;8(13):1048–1054. doi: 10.1096/fasebj.8.13.7926370. [DOI] [PubMed] [Google Scholar]
  7. Cohen D. M., Gullans S. R., Chin W. W. Urea inducibility of egr-1 in murine inner medullary collecting duct cells is mediated by the serum response element and adjacent Ets motifs. J Biol Chem. 1996 May 31;271(22):12903–12908. doi: 10.1074/jbc.271.22.12903. [DOI] [PubMed] [Google Scholar]
  8. Cohen D. M., Gullans S. R. Urea induces Egr-1 and c-fos expression in renal epithelial cells. Am J Physiol. 1993 Apr;264(4 Pt 2):F593–F600. doi: 10.1152/ajprenal.1993.264.4.F593. [DOI] [PubMed] [Google Scholar]
  9. Cohen D. M. Urea-inducible Egr-1 transcription in renal inner medullary collecting duct (mIMCD3) cells is mediated by extracellular signal-regulated kinase activation. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11242–11247. doi: 10.1073/pnas.93.20.11242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cucina A., Sterpetti A. V., Pupelis G., Fragale A., Lepidi S., Cavallaro A., Giustiniani Q., Santoro D'Angelo L. Shear stress induces changes in the morphology and cytoskeleton organisation of arterial endothelial cells. Eur J Vasc Endovasc Surg. 1995 Jan;9(1):86–92. doi: 10.1016/s1078-5884(05)80230-8. [DOI] [PubMed] [Google Scholar]
  11. Cui M. Z., Parry G. C., Oeth P., Larson H., Smith M., Huang R. P., Adamson E. D., Mackman N. Transcriptional regulation of the tissue factor gene in human epithelial cells is mediated by Sp1 and EGR-1. J Biol Chem. 1996 Feb 2;271(5):2731–2739. doi: 10.1074/jbc.271.5.2731. [DOI] [PubMed] [Google Scholar]
  12. Darland T., Samuels M., Edwards S. A., Sukhatme V. P., Adamson E. D. Regulation of Egr-1 (Zfp-6) and c-fos expression in differentiating embryonal carcinoma cells. Oncogene. 1991 Aug;6(8):1367–1376. [PubMed] [Google Scholar]
  13. Dimmeler S., Haendeler J., Nehls M., Zeiher A. M. Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med. 1997 Feb 17;185(4):601–607. doi: 10.1084/jem.185.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dimmeler S., Haendeler J., Rippmann V., Nehls M., Zeiher A. M. Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett. 1996 Dec 9;399(1-2):71–74. doi: 10.1016/s0014-5793(96)01289-6. [DOI] [PubMed] [Google Scholar]
  15. Eustice D. C., Feldman P. A., Colberg-Poley A. M., Buckery R. M., Neubauer R. H. A sensitive method for the detection of beta-galactosidase in transfected mammalian cells. Biotechniques. 1991 Dec;11(6):739-40, 742-3. [PubMed] [Google Scholar]
  16. Franke R. P., Gräfe M., Schnittler H., Seiffge D., Mittermayer C., Drenckhahn D. Induction of human vascular endothelial stress fibres by fluid shear stress. Nature. 1984 Feb 16;307(5952):648–649. doi: 10.1038/307648a0. [DOI] [PubMed] [Google Scholar]
  17. Gashler A., Sukhatme V. P. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol. 1995;50:191–224. doi: 10.1016/s0079-6603(08)60815-6. [DOI] [PubMed] [Google Scholar]
  18. Gimbrone M. A., Jr, Nagel T., Topper J. N. Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Invest. 1997 Apr 15;99(8):1809–1813. doi: 10.1172/JCI119346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gimbrone M. A., Jr, Resnick N., Nagel T., Khachigian L. M., Collins T., Topper J. N. Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci. 1997 Apr 15;811:1–11. doi: 10.1111/j.1749-6632.1997.tb51983.x. [DOI] [PubMed] [Google Scholar]
  20. Gius D., Cao X. M., Rauscher F. J., 3rd, Cohen D. R., Curran T., Sukhatme V. P. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol Cell Biol. 1990 Aug;10(8):4243–4255. doi: 10.1128/mcb.10.8.4243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gudi S. R., Clark C. B., Frangos J. A. Fluid flow rapidly activates G proteins in human endothelial cells. Involvement of G proteins in mechanochemical signal transduction. Circ Res. 1996 Oct;79(4):834–839. doi: 10.1161/01.res.79.4.834. [DOI] [PubMed] [Google Scholar]
  22. Henry P. D., Cabello O. A., Chen C. H. Hypercholesterolemia and endothelial dysfunction. Curr Opin Lipidol. 1995 Aug;6(4):190–195. doi: 10.1097/00041433-199508000-00002. [DOI] [PubMed] [Google Scholar]
  23. Ishida T., Peterson T. E., Kovach N. L., Berk B. C. MAP kinase activation by flow in endothelial cells. Role of beta 1 integrins and tyrosine kinases. Circ Res. 1996 Aug;79(2):310–316. doi: 10.1161/01.res.79.2.310. [DOI] [PubMed] [Google Scholar]
  24. Jacobs E. R., Cheliakine C., Gebremedhin D., Birks E. K., Davies P. F., Harder D. R. Shear activated channels in cell-attached patches of cultured bovine aortic endothelial cells. Pflugers Arch. 1995 Nov;431(1):129–131. doi: 10.1007/BF00374386. [DOI] [PubMed] [Google Scholar]
  25. Jo H., Sipos K., Go Y. M., Law R., Rong J., McDonald J. M. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem. 1997 Jan 10;272(2):1395–1401. doi: 10.1074/jbc.272.2.1395. [DOI] [PubMed] [Google Scholar]
  26. Kaiser D., Freyberg M. A., Friedl P. Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun. 1997 Feb 24;231(3):586–590. doi: 10.1006/bbrc.1997.6146. [DOI] [PubMed] [Google Scholar]
  27. Khachigian L. M., Anderson K. R., Halnon N. J., Gimbrone M. A., Jr, Resnick N., Collins T. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):2280–2286. doi: 10.1161/01.atv.17.10.2280. [DOI] [PubMed] [Google Scholar]
  28. Khachigian L. M., Collins T. Inducible expression of Egr-1-dependent genes. A paradigm of transcriptional activation in vascular endothelium. Circ Res. 1997 Oct;81(4):457–461. doi: 10.1161/01.res.81.4.457. [DOI] [PubMed] [Google Scholar]
  29. Khachigian L. M., Lindner V., Williams A. J., Collins T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science. 1996 Mar 8;271(5254):1427–1431. doi: 10.1126/science.271.5254.1427. [DOI] [PubMed] [Google Scholar]
  30. Khachigian L. M., Resnick N., Gimbrone M. A., Jr, Collins T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest. 1995 Aug;96(2):1169–1175. doi: 10.1172/JCI118106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ku D. N., Giddens D. P., Zarins C. K., Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985 May-Jun;5(3):293–302. doi: 10.1161/01.atv.5.3.293. [DOI] [PubMed] [Google Scholar]
  32. Lan Q., Mercurius K. O., Davies P. F. Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress. Biochem Biophys Res Commun. 1994 Jun 15;201(2):950–956. doi: 10.1006/bbrc.1994.1794. [DOI] [PubMed] [Google Scholar]
  33. Lau L. F., Nathans D. Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1182–1186. doi: 10.1073/pnas.84.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lee H. J., Mignacca R. C., Sakamoto K. M. Transcriptional activation of egr-1 by granulocyte-macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133. J Biol Chem. 1995 Jul 7;270(27):15979–15983. doi: 10.1074/jbc.270.27.15979. [DOI] [PubMed] [Google Scholar]
  35. Lei M., Kleinstreuer C., Truskey G. A. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med Eng Phys. 1996 Jun;18(4):326–332. doi: 10.1016/1350-4533(95)00045-3. [DOI] [PubMed] [Google Scholar]
  36. Li Y. S., Shyy J. Y., Li S., Lee J., Su B., Karin M., Chien S. The Ras-JNK pathway is involved in shear-induced gene expression. Mol Cell Biol. 1996 Nov;16(11):5947–5954. doi: 10.1128/mcb.16.11.5947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lin M. C., Almus-Jacobs F., Chen H. H., Parry G. C., Mackman N., Shyy J. Y., Chien S. Shear stress induction of the tissue factor gene. J Clin Invest. 1997 Feb 15;99(4):737–744. doi: 10.1172/JCI119219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Madden S. L., Cook D. M., Morris J. F., Gashler A., Sukhatme V. P., Rauscher F. J., 3rd Transcriptional repression mediated by the WT1 Wilms tumor gene product. Science. 1991 Sep 27;253(5027):1550–1553. doi: 10.1126/science.1654597. [DOI] [PubMed] [Google Scholar]
  39. Malek A. M., Izumo S. Control of endothelial cell gene expression by flow. J Biomech. 1995 Dec;28(12):1515–1528. doi: 10.1016/0021-9290(95)00099-2. [DOI] [PubMed] [Google Scholar]
  40. Malek A. M., Izumo S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci. 1996 Apr;109(Pt 4):713–726. doi: 10.1242/jcs.109.4.713. [DOI] [PubMed] [Google Scholar]
  41. Maltzman J. S., Carman J. A., Monroe J. G. Role of EGR1 in regulation of stimulus-dependent CD44 transcription in B lymphocytes. Mol Cell Biol. 1996 May;16(5):2283–2294. doi: 10.1128/mcb.16.5.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McMahon S. B., Monroe J. G. A ternary complex factor-dependent mechanism mediates induction of egr-1 through selective serum response elements following antigen receptor cross-linking in B lymphocytes. Mol Cell Biol. 1995 Feb;15(2):1086–1093. doi: 10.1128/mcb.15.2.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Nagel T., Resnick N., Atkinson W. J., Dewey C. F., Jr, Gimbrone M. A., Jr Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest. 1994 Aug;94(2):885–891. doi: 10.1172/JCI117410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Patrick C. W., Jr, McIntire L. V. Shear stress and cyclic strain modulation of gene expression in vascular endothelial cells. Blood Purif. 1995;13(3-4):112–124. doi: 10.1159/000170194. [DOI] [PubMed] [Google Scholar]
  45. Pearce M. J., McIntyre T. M., Prescott S. M., Zimmerman G. A., Whatley R. E. Shear stress activates cytosolic phospholipase A2 (cPLA2) and MAP kinase in human endothelial cells. Biochem Biophys Res Commun. 1996 Jan 17;218(2):500–504. doi: 10.1006/bbrc.1996.0089. [DOI] [PubMed] [Google Scholar]
  46. Price M. A., Rogers A. E., Treisman R. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J. 1995 Jun 1;14(11):2589–2601. doi: 10.1002/j.1460-2075.1995.tb07257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Qureshi S. A., Cao X. M., Sukhatme V. P., Foster D. A. v-Src activates mitogen-responsive transcription factor Egr-1 via serum response elements. J Biol Chem. 1991 Jun 15;266(17):10802–10806. [PubMed] [Google Scholar]
  48. Resnick N., Collins T., Atkinson W., Bonthron D. T., Dewey C. F., Jr, Gimbrone M. A., Jr Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4591–4595. doi: 10.1073/pnas.90.10.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rim M., Qureshi S. A., Gius D., Nho J., Sukhatme V. P., Foster D. A. Evidence that activation of the Egr-1 promoter by v-Raf involves serum response elements. Oncogene. 1992 Oct;7(10):2065–2068. [PubMed] [Google Scholar]
  50. Rouet P., Raguenez G., Salier J. P. Optimized assays for quantifying transient expressions of co-transfected beta-galactosidase and CAT reporter genes. Biotechniques. 1992 Nov;13(5):700–701. [PubMed] [Google Scholar]
  51. Rupprecht H. D., Sukhatme V. P., Lacy J., Sterzel R. B., Coleman D. L. PDGF-induced Egr-1 expression in rat mesangial cells is mediated through upstream serum response elements. Am J Physiol. 1993 Sep;265(3 Pt 2):F351–F360. doi: 10.1152/ajprenal.1993.265.3.F351. [DOI] [PubMed] [Google Scholar]
  52. Sakamoto K. M., Bardeleben C., Yates K. E., Raines M. A., Golde D. W., Gasson J. C. 5' upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS8. Oncogene. 1991 May;6(5):867–871. [PubMed] [Google Scholar]
  53. Shyy J. Y., Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol. 1997 Oct;9(5):707–713. doi: 10.1016/s0955-0674(97)80125-1. [DOI] [PubMed] [Google Scholar]
  54. Shyy J. Y., Li Y. S., Lin M. C., Chen W., Yuan S., Usami S., Chien S. Multiple cis-elements mediate shear stress-induced gene expression. J Biomech. 1995 Dec;28(12):1451–1457. doi: 10.1016/0021-9290(95)00093-3. [DOI] [PubMed] [Google Scholar]
  55. Shyy J. Y., Lin M. C., Han J., Lu Y., Petrime M., Chien S. The cis-acting phorbol ester "12-O-tetradecanoylphorbol 13-acetate"-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):8069–8073. doi: 10.1073/pnas.92.17.8069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Su S., Vivier R. G., Dickson M. C., Thomas N., Kendrick M. K., Williamson N. M., Anson J. G., Houston J. G., Craig F. F. High-throughput RT-PCR analysis of multiple transcripts using a microplate RNA isolation procedure. Biotechniques. 1997 Jun;22(6):1107–1113. doi: 10.2144/97226st02. [DOI] [PubMed] [Google Scholar]
  57. Sukhatme V. P., Cao X. M., Chang L. C., Tsai-Morris C. H., Stamenkovich D., Ferreira P. C., Cohen D. R., Edwards S. A., Shows T. B., Curran T. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988 Apr 8;53(1):37–43. doi: 10.1016/0092-8674(88)90485-0. [DOI] [PubMed] [Google Scholar]
  58. Takahashi M., Berk B. C. Mitogen-activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin-sensitive kinase. J Clin Invest. 1996 Dec 1;98(11):2623–2631. doi: 10.1172/JCI119083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Thoumine O., Nerem R. M., Girard P. R. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell Dev Biol Anim. 1995 Jan;31(1):45–54. doi: 10.1007/BF02631337. [DOI] [PubMed] [Google Scholar]
  60. Topper J. N., Cai J., Falb D., Gimbrone M. A., Jr Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10417–10422. doi: 10.1073/pnas.93.19.10417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Topper J. N., Wasserman S. M., Anderson K. R., Cai J., Falb D., Gimbrone M. A., Jr Expression of the bumetanide-sensitive Na-K-Cl cotransporter BSC2 is differentially regulated by fluid mechanical and inflammatory cytokine stimuli in vascular endothelium. J Clin Invest. 1997 Jun 15;99(12):2941–2949. doi: 10.1172/JCI119489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Treisman R. Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev. 1994 Feb;4(1):96–101. doi: 10.1016/0959-437x(94)90097-3. [DOI] [PubMed] [Google Scholar]
  63. Tsao P. S., Buitrago R., Chan J. R., Cooke J. P. Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation. 1996 Oct 1;94(7):1682–1689. doi: 10.1161/01.cir.94.7.1682. [DOI] [PubMed] [Google Scholar]
  64. Watanabe S., Kubota H., Sakamoto K. M., Arai K. Characterization of cis-acting sequences and trans-acting signals regulating early growth response 1 and c-fos promoters through the granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. Blood. 1997 Feb 15;89(4):1197–1206. [PubMed] [Google Scholar]
  65. Waters C. M., Hancock D. C., Evan G. I. Identification and characterisation of the egr-1 gene product as an inducible, short-lived, nuclear phosphoprotein. Oncogene. 1990 May;5(5):669–674. [PubMed] [Google Scholar]
  66. Yoshida Y., Okano M., Wang S., Kobayashi M., Kawasumi M., Hagiwara H., Mitsumata M. Hemodynamic-force-induced difference of interendothelial junctional complexes. Ann N Y Acad Sci. 1995 Jan 17;748:104–121. doi: 10.1111/j.1749-6632.1994.tb17311.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES