Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 1;101(11):2550–2558. doi: 10.1172/JCI1204

Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin.

M Udani 1, Q Zen 1, M Cottman 1, N Leonard 1, S Jefferson 1, C Daymont 1, G Truskey 1, M J Telen 1
PMCID: PMC508844  PMID: 9616226

Abstract

Sickle red cells bind significant amounts of soluble laminin, whereas normal red cells do not. Solid phase assays demonstrate that B-CAM/LU binds laminin on intact sickle red cells and that red cell B-CAM/LU binds immobilized laminin, whereas another putative laminin binding protein, CD44, does not. Ligand blots also identify B-CAM/LU as the only erythrocyte membrane protein(s) that binds laminin. Finally, transfection of murine erythroleukemia cells with human B-CAM cDNA induces binding of both soluble and immobilized laminin. Thus, B-CAM/LU appears to be the major laminin-binding protein of sickle red cells. Previously reported overexpression of B-CAM/LU by epithelial cancer cells suggests that this protein may also serve as a laminin receptor in malignant tumors.

Full Text

The Full Text of this article is available as a PDF (271.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aumailley M., Krieg T. Laminins: a family of diverse multifunctional molecules of basement membranes. J Invest Dermatol. 1996 Feb;106(2):209–214. doi: 10.1111/1523-1747.ep12340471. [DOI] [PubMed] [Google Scholar]
  2. Bailly P., Hermand P., Callebaut I., Sonneborn H. H., Khamlichi S., Mornon J. P., Cartron J. P. The LW blood group glycoprotein is homologous to intercellular adhesion molecules. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5306–5310. doi: 10.1073/pnas.91.12.5306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailly P., Tontti E., Hermand P., Cartron J. P., Gahmberg C. G. The red cell LW blood group protein is an intercellular adhesion molecule which binds to CD11/CD18 leukocyte integrins. Eur J Immunol. 1995 Dec;25(12):3316–3320. doi: 10.1002/eji.1830251217. [DOI] [PubMed] [Google Scholar]
  4. Banting G. S., Pym B., Darling S. M., Goodfellow P. N. The MIC2 gene product: epitope mapping and structural prediction analysis define an integral membrane protein. Mol Immunol. 1989 Feb;26(2):181–188. doi: 10.1016/0161-5890(89)90100-4. [DOI] [PubMed] [Google Scholar]
  5. Brittain H. A., Eckman J. R., Wick T. M. Sickle erythrocyte adherence to large vessel and microvascular endothelium under physiologic flow is qualitatively different. J Lab Clin Med. 1992 Oct;120(4):538–545. [PubMed] [Google Scholar]
  6. Campbell I. G., Foulkes W. D., Senger G., Trowsdale J., Garin-Chesa P., Rettig W. J. Molecular cloning of the B-CAM cell surface glycoprotein of epithelial cancers: a novel member of the immunoglobulin superfamily. Cancer Res. 1994 Nov 15;54(22):5761–5765. [PubMed] [Google Scholar]
  7. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  8. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  9. Gao A. G., Lindberg F. P., Finn M. B., Blystone S. D., Brown E. J., Frazier W. A. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem. 1996 Jan 5;271(1):21–24. doi: 10.1074/jbc.271.1.21. [DOI] [PubMed] [Google Scholar]
  10. Gelin C., Aubrit F., Phalipon A., Raynal B., Cole S., Kaczorek M., Bernard A. The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. EMBO J. 1989 Nov;8(11):3253–3259. doi: 10.1002/j.1460-2075.1989.tb08485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gille J., Swerlick R. A. Integrins: role in cell adhesion and communication. Ann N Y Acad Sci. 1996 Oct 25;797:93–106. doi: 10.1111/j.1749-6632.1996.tb52952.x. [DOI] [PubMed] [Google Scholar]
  12. Goodfellow P. N., Pym B., Pritchard C., Ellis N., Palmer M., Smith M., Goodfellow P. J. MIC2: a human pseudoautosomal gene. Philos Trans R Soc Lond B Biol Sci. 1988 Dec 1;322(1208):145–154. doi: 10.1098/rstb.1988.0122. [DOI] [PubMed] [Google Scholar]
  13. Hale L. P., Singer K. H., Haynes B. F. CD44 antibody against In(Lu)-related p80, lymphocyte-homing receptor molecule inhibits the binding of human erythrocytes to T cells. J Immunol. 1989 Dec 15;143(12):3944–3948. [PubMed] [Google Scholar]
  14. Hebbel R. P. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991 Jan 15;77(2):214–237. [PubMed] [Google Scholar]
  15. Hebbel R. P., Leung A., Mohandas N. Oxidation-induced changes in microrheologic properties of the red blood cell membrane. Blood. 1990 Sep 1;76(5):1015–1020. [PubMed] [Google Scholar]
  16. Hebbel R. P., Morgan W. T., Eaton J. W., Hedlund B. E. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci U S A. 1988 Jan;85(1):237–241. doi: 10.1073/pnas.85.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hebbel R. P., Yamada O., Moldow C. F., Jacob H. S., White J. G., Eaton J. W. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest. 1980 Jan;65(1):154–160. doi: 10.1172/JCI109646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hillery C. A., Du M. C., Montgomery R. R., Scott J. P. Increased adhesion of erythrocytes to components of the extracellular matrix: isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin. Blood. 1996 Jun 1;87(11):4879–4886. [PubMed] [Google Scholar]
  19. Hoover R., Rubin R., Wise G., Warren R. Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood. 1979 Oct;54(4):872–876. [PubMed] [Google Scholar]
  20. Jalkanen S., Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol. 1992 Feb;116(3):817–825. doi: 10.1083/jcb.116.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kleinman H. K., Weeks B. S., Schnaper H. W., Kibbey M. C., Yamamura K., Grant D. S. The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam Horm. 1993;47:161–186. doi: 10.1016/s0083-6729(08)60446-x. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Liao H. X., Levesque M. C., Patton K., Bergamo B., Jones D., Moody M. A., Telen M. J., Haynes B. F. Regulation of human CD44H and CD44E isoform binding to hyaluronan by phorbol myristate acetate and anti-CD44 monoclonal and polyclonal antibodies. J Immunol. 1993 Dec 1;151(11):6490–6499. [PubMed] [Google Scholar]
  24. Lindberg F. P., Lublin D. M., Telen M. J., Veile R. A., Miller Y. E., Donis-Keller H., Brown E. J. Rh-related antigen CD47 is the signal-transducer integrin-associated protein. J Biol Chem. 1994 Jan 21;269(3):1567–1570. [PubMed] [Google Scholar]
  25. Parsons S. F., Mallinson G., Holmes C. H., Houlihan J. M., Simpson K. L., Mawby W. J., Spurr N. K., Warne D., Barclay A. N., Anstee D. J. The Lutheran blood group glycoprotein, another member of the immunoglobulin superfamily, is widely expressed in human tissues and is developmentally regulated in human liver. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5496–5500. doi: 10.1073/pnas.92.12.5496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parsons S. F., Mallinson G., Judson P. A., Anstee D. J., Tanner M. J., Daniels G. L. Evidence that the Lub blood group antigen is located on red cell membrane glycoproteins of 85 and 78 kd. Transfusion. 1987 Jan-Feb;27(1):61–63. doi: 10.1046/j.1537-2995.1987.27187121477.x. [DOI] [PubMed] [Google Scholar]
  27. Petty A. C. Monoclonal antibody-specific immobilisation of erythrocyte antigens (MAIEA). A new technique to selectively determine antigenic sites on red cell membranes. J Immunol Methods. 1993 May 5;161(1):91–95. doi: 10.1016/0022-1759(93)90200-q. [DOI] [PubMed] [Google Scholar]
  28. Rahuel C., Le Van Kim C., Mattei M. G., Cartron J. P., Colin Y. A unique gene encodes spliceoforms of the B-cell adhesion molecule cell surface glycoprotein of epithelial cancer and of the Lutheran blood group glycoprotein. Blood. 1996 Sep 1;88(5):1865–1872. [PubMed] [Google Scholar]
  29. Rao N., Udani M., Nelson J., Reid M. E., Telen M. J. Investigations using a novel monoclonal antibody to the glycosylphosphatidylinositol-anchored protein that carries Gregory, Holley, and Dombrock blood group antigens. Transfusion. 1995 Jun;35(6):459–464. doi: 10.1046/j.1537-2995.1995.35695288762.x. [DOI] [PubMed] [Google Scholar]
  30. Sjaastad M. D., Nelson W. J. Integrin-mediated calcium signaling and regulation of cell adhesion by intracellular calcium. Bioessays. 1997 Jan;19(1):47–55. doi: 10.1002/bies.950190109. [DOI] [PubMed] [Google Scholar]
  31. Sowemimo-Coker S. O., Meiselman H. J., Francis R. B., Jr Increased circulating endothelial cells in sickle cell crisis. Am J Hematol. 1989 Aug;31(4):263–265. doi: 10.1002/ajh.2830310409. [DOI] [PubMed] [Google Scholar]
  32. Telen M. J., Eisenbarth G. S., Haynes B. F. Human erythrocyte antigens. Regulation of expression of a novel erythrocyte surface antigen by the inhibitor Lutheran In(Lu) gene. J Clin Invest. 1983 Jun;71(6):1878–1886. doi: 10.1172/JCI110943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Telen M. J., Green A. M. Human red cell antigens. V. Expression of In(Lu)-related p80 antigens by recessive-type Lu(a-b-) red cells. Transfusion. 1988 Sep-Oct;28(5):430–434. doi: 10.1046/j.1537-2995.1988.28588337330.x. [DOI] [PubMed] [Google Scholar]
  34. Telen M. J., Palker T. J., Haynes B. F. Human erythrocyte antigens: II. The In(Lu) gene regulates expression of an antigen on an 80-kilodalton protein of human erythrocytes. Blood. 1984 Sep;64(3):599–606. [PubMed] [Google Scholar]
  35. Telen M. J., Rogers I., Letarte M. Further characterization of erythrocyte p80 and the membrane protein defect of In(Lu) Lu(a-b-) erythrocytes. Blood. 1987 Nov;70(5):1475–1481. [PubMed] [Google Scholar]
  36. Telen M. J., Udani M., Washington M. K., Levesque M. C., Lloyd E., Rao N. A blood group-related polymorphism of CD44 abolishes a hyaluronan-binding consensus sequence without preventing hyaluronan binding. J Biol Chem. 1996 Mar 22;271(12):7147–7153. doi: 10.1074/jbc.271.12.7147. [DOI] [PubMed] [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xiao Y., Truskey G. A. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J. 1996 Nov;71(5):2869–2884. doi: 10.1016/S0006-3495(96)79484-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES