Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 1;101(11):2567–2578. doi: 10.1172/JCI1560

Nitric oxide synthase modulates angiogenesis in response to tissue ischemia.

T Murohara 1, T Asahara 1, M Silver 1, C Bauters 1, H Masuda 1, C Kalka 1, M Kearney 1, D Chen 1, J F Symes 1, M C Fishman 1, P L Huang 1, J M Isner 1
PMCID: PMC508846  PMID: 9616228

Abstract

We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anversa P., Loud A. V., Giacomelli F., Wiener J. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab Invest. 1978 May;38(5):597–609. [PubMed] [Google Scholar]
  2. Arnal J. F., Münzel T., Venema R. C., James N. L., Bai C. L., Mitch W. E., Harrison D. G. Interactions between L-arginine and L-glutamine change endothelial NO production. An effect independent of NO synthase substrate availability. J Clin Invest. 1995 Jun;95(6):2565–2572. doi: 10.1172/JCI117957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asahara T., Bauters C., Pastore C., Kearney M., Rossow S., Bunting S., Ferrara N., Symes J. F., Isner J. M. Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation. 1995 Jun 1;91(11):2793–2801. doi: 10.1161/01.cir.91.11.2793. [DOI] [PubMed] [Google Scholar]
  4. Asahara T., Chen D., Tsurumi Y., Kearney M., Rossow S., Passeri J., Symes J. F., Isner J. M. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation. 1996 Dec 15;94(12):3291–3302. doi: 10.1161/01.cir.94.12.3291. [DOI] [PubMed] [Google Scholar]
  5. Baffour R., Berman J., Garb J. L., Rhee S. W., Kaufman J., Friedmann P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg. 1992 Aug;16(2):181–191. [PubMed] [Google Scholar]
  6. Banai S., Jaklitsch M. T., Shou M., Lazarous D. F., Scheinowitz M., Biro S., Epstein S. E., Unger E. F. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation. 1994 May;89(5):2183–2189. doi: 10.1161/01.cir.89.5.2183. [DOI] [PubMed] [Google Scholar]
  7. Bauters C., Asahara T., Zheng L. P., Takeshita S., Bunting S., Ferrara N., Symes J. F., Isner J. M. Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am J Physiol. 1994 Oct;267(4 Pt 2):H1263–H1271. doi: 10.1152/ajpheart.1994.267.4.H1263. [DOI] [PubMed] [Google Scholar]
  8. Bauters C., Asahara T., Zheng L. P., Takeshita S., Bunting S., Ferrara N., Symes J. F., Isner J. M. Recovery of disturbed endothelium-dependent flow in the collateral-perfused rabbit ischemic hindlimb after administration of vascular endothelial growth factor. Circulation. 1995 Jun 1;91(11):2802–2809. doi: 10.1161/01.cir.91.11.2802. [DOI] [PubMed] [Google Scholar]
  9. Bode-Böger S. M., Böger R. H., Alfke H., Heinzel D., Tsikas D., Creutzig A., Alexander K., Frölich J. C. L-arginine induces nitric oxide-dependent vasodilation in patients with critical limb ischemia. A randomized, controlled study. Circulation. 1996 Jan 1;93(1):85–90. doi: 10.1161/01.cir.93.1.85. [DOI] [PubMed] [Google Scholar]
  10. Brock T. A., Dvorak H. F., Senger D. R. Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol. 1991 Jan;138(1):213–221. [PMC free article] [PubMed] [Google Scholar]
  11. Böger R. H., Bode-Böger S. M., Thiele W., Junker W., Alexander K., Frölich J. C. Biochemical evidence for impaired nitric oxide synthesis in patients with peripheral arterial occlusive disease. Circulation. 1997 Apr 15;95(8):2068–2074. doi: 10.1161/01.cir.95.8.2068. [DOI] [PubMed] [Google Scholar]
  12. Chauhan A., More R. S., Mullins P. A., Taylor G., Petch C., Schofield P. M. Aging-associated endothelial dysfunction in humans is reversed by L-arginine. J Am Coll Cardiol. 1996 Dec;28(7):1796–1804. doi: 10.1016/s0735-1097(96)00394-4. [DOI] [PubMed] [Google Scholar]
  13. Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992 Oct;90(4):1248–1253. doi: 10.1172/JCI115987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Flanagan M. F., Fujii A. M., Colan S. D., Flanagan R. G., Lock J. E. Myocardial angiogenesis and coronary perfusion in left ventricular pressure-overload hypertrophy in the young lamb. Evidence for inhibition with chronic protamine administration. Circ Res. 1991 May;68(5):1458–1470. doi: 10.1161/01.res.68.5.1458. [DOI] [PubMed] [Google Scholar]
  15. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  16. Förstermann U., Closs E. I., Pollock J. S., Nakane M., Schwarz P., Gath I., Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994 Jun;23(6 Pt 2):1121–1131. doi: 10.1161/01.hyp.23.6.1121. [DOI] [PubMed] [Google Scholar]
  17. Girerd X. J., Hirsch A. T., Cooke J. P., Dzau V. J., Creager M. A. L-arginine augments endothelium-dependent vasodilation in cholesterol-fed rabbits. Circ Res. 1990 Dec;67(6):1301–1308. doi: 10.1161/01.res.67.6.1301. [DOI] [PubMed] [Google Scholar]
  18. Giugliano D., Marfella R., Verrazzo G., Acampora R., Coppola L., Cozzolino D., D'Onofrio F. The vascular effects of L-Arginine in humans. The role of endogenous insulin. J Clin Invest. 1997 Feb 1;99(3):433–438. doi: 10.1172/JCI119177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guo J. P., Panday M. M., Consigny P. M., Lefer A. M. Mechanisms of vascular preservation by a novel NO donor following rat carotid artery intimal injury. Am J Physiol. 1995 Sep;269(3 Pt 2):H1122–H1131. doi: 10.1152/ajpheart.1995.269.3.H1122. [DOI] [PubMed] [Google Scholar]
  20. Hamon M., Vallet B., Bauters C., Wernert N., McFadden E. P., Lablanche J. M., Dupuis B., Bertrand M. E. Long-term oral administration of L-arginine reduces intimal thickening and enhances neoendothelium-dependent acetylcholine-induced relaxation after arterial injury. Circulation. 1994 Sep;90(3):1357–1362. doi: 10.1161/01.cir.90.3.1357. [DOI] [PubMed] [Google Scholar]
  21. Hariawala M. D., Horowitz J. R., Esakof D., Sheriff D. D., Walter D. H., Keyt B., Isner J. M., Symes J. F. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J Surg Res. 1996 Jun;63(1):77–82. doi: 10.1006/jsre.1996.0226. [DOI] [PubMed] [Google Scholar]
  22. Horowitz J. R., Rivard A., van der Zee R., Hariawala M., Sheriff D. D., Esakof D. D., Chaudhry G. M., Symes J. F., Isner J. M. Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2793–2800. doi: 10.1161/01.atv.17.11.2793. [DOI] [PubMed] [Google Scholar]
  23. Huang P. L., Huang Z., Mashimo H., Bloch K. D., Moskowitz M. A., Bevan J. A., Fishman M. C. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995 Sep 21;377(6546):239–242. doi: 10.1038/377239a0. [DOI] [PubMed] [Google Scholar]
  24. Ignarro L. J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol. 1990;30:535–560. doi: 10.1146/annurev.pa.30.040190.002535. [DOI] [PubMed] [Google Scholar]
  25. Isner J. M., Pieczek A., Schainfeld R., Blair R., Haley L., Asahara T., Rosenfield K., Razvi S., Walsh K., Symes J. F. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996 Aug 10;348(9024):370–374. doi: 10.1016/s0140-6736(96)03361-2. [DOI] [PubMed] [Google Scholar]
  26. Ito A., Egashira K., Kadokami T., Fukumoto Y., Takayanagi T., Nakaike R., Kuga T., Sueishi K., Shimokawa H., Takeshita A. Chronic inhibition of endothelium-derived nitric oxide synthesis causes coronary microvascular structural changes and hyperreactivity to serotonin in pigs. Circulation. 1995 Nov 1;92(9):2636–2644. doi: 10.1161/01.cir.92.9.2636. [DOI] [PubMed] [Google Scholar]
  27. Keefer L. K., Nims R. W., Davies K. M., Wink D. A. "NONOates" (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol. 1996;268:281–293. doi: 10.1016/s0076-6879(96)68030-6. [DOI] [PubMed] [Google Scholar]
  28. Khan F., Palacino J. J., Coffman J. D., Cohen R. A. Chronic inhibition of nitric oxide production augments skin vasoconstriction in the rabbit ear. J Cardiovasc Pharmacol. 1993 Aug;22(2):280–286. doi: 10.1097/00005344-199308000-00017. [DOI] [PubMed] [Google Scholar]
  29. Ku D. D., Zaleski J. K., Liu S., Brock T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol. 1993 Aug;265(2 Pt 2):H586–H592. doi: 10.1152/ajpheart.1993.265.2.H586. [DOI] [PubMed] [Google Scholar]
  30. Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lau Y. T., Ma W. C. Nitric oxide inhibits migration of cultured endothelial cells. Biochem Biophys Res Commun. 1996 Apr 25;221(3):670–674. doi: 10.1006/bbrc.1996.0654. [DOI] [PubMed] [Google Scholar]
  32. Liebmann J., DeLuca A. M., Coffin D., Keefer L. K., Venzon D., Wink D. A., Mitchell J. B. In vivo radiation protection by nitric oxide modulation. Cancer Res. 1994 Jul 1;54(13):3365–3368. [PubMed] [Google Scholar]
  33. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  34. Morbidelli L., Chang C. H., Douglas J. G., Granger H. J., Ledda F., Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol. 1996 Jan;270(1 Pt 2):H411–H415. doi: 10.1152/ajpheart.1996.270.1.H411. [DOI] [PubMed] [Google Scholar]
  35. Namiki A., Brogi E., Kearney M., Kim E. A., Wu T., Couffinhal T., Varticovski L., Isner J. M. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem. 1995 Dec 29;270(52):31189–31195. doi: 10.1074/jbc.270.52.31189. [DOI] [PubMed] [Google Scholar]
  36. Nicosia R. F., Nicosia S. V., Smith M. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol. 1994 Nov;145(5):1023–1029. [PMC free article] [PubMed] [Google Scholar]
  37. Papapetropoulos A., Desai K. M., Rudic R. D., Mayer B., Zhang R., Ruiz-Torres M. P., García-Cardeña G., Madri J. A., Sessa W. C. Nitric oxide synthase inhibitors attenuate transforming-growth-factor-beta 1-stimulated capillary organization in vitro. Am J Pathol. 1997 May;150(5):1835–1844. [PMC free article] [PubMed] [Google Scholar]
  38. Papapetropoulos A., García-Cardeña G., Madri J. A., Sessa W. C. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest. 1997 Dec 15;100(12):3131–3139. doi: 10.1172/JCI119868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pearlman J. D., Hibberd M. G., Chuang M. L., Harada K., Lopez J. J., Gladstone S. R., Friedman M., Sellke F. W., Simons M. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nat Med. 1995 Oct;1(10):1085–1089. doi: 10.1038/nm1095-1085. [DOI] [PubMed] [Google Scholar]
  40. Pipili-Synetos E., Sakkoula E., Haralabopoulos G., Andriopoulou P., Peristeris P., Maragoudakis M. E. Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br J Pharmacol. 1994 Mar;111(3):894–902. doi: 10.1111/j.1476-5381.1994.tb14822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pipili-Synetos E., Sakkoula E., Maragoudakis M. E. Nitric oxide is involved in the regulation of angiogenesis. Br J Pharmacol. 1993 Apr;108(4):855–857. doi: 10.1111/j.1476-5381.1993.tb13476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  43. Sessa W. C. The nitric oxide synthase family of proteins. J Vasc Res. 1994 May-Jun;31(3):131–143. doi: 10.1159/000159039. [DOI] [PubMed] [Google Scholar]
  44. Shesely E. G., Maeda N., Kim H. S., Desai K. M., Krege J. H., Laubach V. E., Sherman P. A., Sessa W. C., Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13176–13181. doi: 10.1073/pnas.93.23.13176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sholley M. M., Ferguson G. P., Seibel H. R., Montour J. L., Wilson J. D. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest. 1984 Dec;51(6):624–634. [PubMed] [Google Scholar]
  46. Steudel W., Ichinose F., Huang P. L., Hurford W. E., Jones R. C., Bevan J. A., Fishman M. C., Zapol W. M. Pulmonary vasoconstriction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ Res. 1997 Jul;81(1):34–41. doi: 10.1161/01.res.81.1.34. [DOI] [PubMed] [Google Scholar]
  47. Takemoto M., Egashira K., Usui M., Numaguchi K., Tomita H., Tsutsui H., Shimokawa H., Sueishi K., Takeshita A. Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest. 1997 Jan 15;99(2):278–287. doi: 10.1172/JCI119156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Takeshita S., Tsurumi Y., Couffinahl T., Asahara T., Bauters C., Symes J., Ferrara N., Isner J. M. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab Invest. 1996 Oct;75(4):487–501. [PubMed] [Google Scholar]
  49. Takeshita S., Zheng L. P., Brogi E., Kearney M., Pu L. Q., Bunting S., Ferrara N., Symes J. F., Isner J. M. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest. 1994 Feb;93(2):662–670. doi: 10.1172/JCI117018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tomanek R. J., Searls J. C., Lachenbruch P. A. Quantitative changes in the capillary bed during developing, peak, and stabilized cardiac hypertrophy in the spontaneously hypertensive rat. Circ Res. 1982 Sep;51(3):295–304. doi: 10.1161/01.res.51.3.295. [DOI] [PubMed] [Google Scholar]
  51. Tsurumi Y., Murohara T., Krasinski K., Chen D., Witzenbichler B., Kearney M., Couffinhal T., Isner J. M. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med. 1997 Aug;3(8):879–886. doi: 10.1038/nm0897-879. [DOI] [PubMed] [Google Scholar]
  52. Wang B. Y., Candipan R. C., Arjomandi M., Hsiun P. T., Tsao P. S., Cooke J. P. Arginine restores nitric oxide activity and inhibits monocyte accumulation after vascular injury in hypercholesterolemic rabbits. J Am Coll Cardiol. 1996 Nov 15;28(6):1573–1579. doi: 10.1016/s0735-1097(96)00337-3. [DOI] [PubMed] [Google Scholar]
  53. Weyrich A. S., Ma X. L., Lefer A. M. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation. 1992 Jul;86(1):279–288. doi: 10.1161/01.cir.86.1.279. [DOI] [PubMed] [Google Scholar]
  54. Ziada A. M., Hudlicka O., Tyler K. R., Wright A. J. The effect of long-term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res. 1984 Dec;18(12):724–732. doi: 10.1093/cvr/18.12.724. [DOI] [PubMed] [Google Scholar]
  55. Ziche M., Morbidelli L., Choudhuri R., Zhang H. T., Donnini S., Granger H. J., Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997 Jun 1;99(11):2625–2634. doi: 10.1172/JCI119451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. van der Zee R., Murohara T., Luo Z., Zollmann F., Passeri J., Lekutat C., Isner J. M. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation. 1997 Feb 18;95(4):1030–1037. doi: 10.1161/01.cir.95.4.1030. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES