Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 15;101(12):2658–2664. doi: 10.1172/JCI2265

Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding.

J Borén 1, K Olin 1, I Lee 1, A Chait 1, T N Wight 1, T L Innerarity 1
PMCID: PMC508856  PMID: 9637699

Abstract

The subendothelial retention of LDLs through their interaction with proteoglycans has been proposed to be a key process in the pathogenesis of atherosclerosis. In vitro studies have identified eight clusters of basic amino acids in delipidated apo-B100, the protein moiety of LDL, that bind the negatively charged proteoglycans. To determine which of these sites is functional on the surface of LDL particles, we analyzed the proteoglycan-binding activity of recombinant human LDL isolated from transgenic mice. Substitution of neutral amino acids for the basic amino acids residues in site B (residues 3359-3369) abolished both the receptor-binding and the proteoglycan-binding activities of the recombinant LDL. Chemical modification of the remaining basic residues caused only a marginal further reduction in proteoglycan binding, indicating that site B is the primary proteoglycan-binding site of LDL. Although site B was essential for normal receptor-binding and proteoglycan-binding activities, these activities could be separated in recombinant LDL containing single-point mutation. Recombinant LDL with a K3363E mutation, in which a glutamic acid had been inserted into the basic cluster RKR in site B, had normal receptor binding but interacted defectively with proteoglycans; in contrast, another mutant LDL, R3500Q, displayed defective receptor binding but interacted normally with proteoglycans. LDL with normal receptor-binding activity but with severely impaired proteoglycan binding will be a unique resource for analyzing the importance of LDL- proteoglycan interaction in atherogenesis. If the subendothelial retention of LDL by proteoglycans is the initial event in early atherosclerosis, then LDL with defective proteoglycan binding may have little or no atherogenic potential.

Full Text

The Full Text of this article is available as a PDF (224.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borén J., Lee I., Callow M. J., Rubin E. M., Innerarity T. L. A simple and efficient method for making site-directed mutants, deletions, and fusions of large DNA such as P1 and BAC clones. Genome Res. 1996 Nov;6(11):1123–1130. doi: 10.1101/gr.6.11.1123. [DOI] [PubMed] [Google Scholar]
  3. Camejo G., Fager G., Rosengren B., Hurt-Camejo E., Bondjers G. Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells. J Biol Chem. 1993 Jul 5;268(19):14131–14137. [PubMed] [Google Scholar]
  4. Camejo G., Olofsson S. O., Lopez F., Carlsson P., Bondjers G. Identification of Apo B-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans. Arteriosclerosis. 1988 Jul-Aug;8(4):368–377. doi: 10.1161/01.atv.8.4.368. [DOI] [PubMed] [Google Scholar]
  5. Camejo G., Rosengren B., Olson U., Lopez F., Olofson S. O., Westerlund C., Bondjers G. Molecular basis of the association of arterial proteoglycans with low density lipoproteins: its effect on the structure of the lipoprotein particle. Eur Heart J. 1990 Aug;11 (Suppl E):164–173. doi: 10.1093/eurheartj/11.suppl_e.164. [DOI] [PubMed] [Google Scholar]
  6. Cardin A. D., Randall C. J., Hirose N., Jackson R. L. Physical-chemical interaction of heparin and human plasma low-density lipoproteins. Biochemistry. 1987 Aug 25;26(17):5513–5518. doi: 10.1021/bi00391a045. [DOI] [PubMed] [Google Scholar]
  7. Cardoso L. E., Mourão P. A. Glycosaminoglycan fractions from human arteries presenting diverse susceptibilities to atherosclerosis have different binding affinities to plasma LDL. Arterioscler Thromb. 1994 Jan;14(1):115–124. doi: 10.1161/01.atv.14.1.115. [DOI] [PubMed] [Google Scholar]
  8. Chang Y., Yanagishita M., Hascall V. C., Wight T. N. Proteoglycans synthesized by smooth muscle cells derived from monkey (Macaca nemestrina) aorta. J Biol Chem. 1983 May 10;258(9):5679–5688. [PubMed] [Google Scholar]
  9. Dunning A. M., Houlston R., Frostegård J., Revill J., Nilsson J., Hamsten A., Talmud P., Humphries S. Genetic evidence that the putative receptor binding domain of apolipoprotein B (residues 3130 to 3630) is not the only region of the protein involved in interaction with the low density lipoprotein receptor. Biochim Biophys Acta. 1991 Apr 15;1096(3):231–237. doi: 10.1016/0925-4439(91)90010-7. [DOI] [PubMed] [Google Scholar]
  10. Galis Z. S., Alavi M. Z., Moore S. Co-localization of aortic apolipoprotein B and chondroitin sulfate in an injury model of atherosclerosis. Am J Pathol. 1993 May;142(5):1432–1438. [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
  12. Hirose N., Blankenship D. T., Krivanek M. A., Jackson R. L., Cardin A. D. Isolation and characterization of four heparin-binding cyanogen bromide peptides of human plasma apolipoprotein B. Biochemistry. 1987 Aug 25;26(17):5505–5512. doi: 10.1021/bi00391a044. [DOI] [PubMed] [Google Scholar]
  13. Hoff H. F., Bond M. G. Apolipoprotein B localization in coronary atherosclerotic plaques from cynomolgus monkeys. Artery. 1983;12(2):104–116. [PubMed] [Google Scholar]
  14. Hoff H. F., Wagner W. D. Plasma low density lipoprotein accumulation in aortas of hypercholesterolemic swine correlates with modifications in aortic glycosaminoglycan composition. Atherosclerosis. 1986 Sep;61(3):231–236. doi: 10.1016/0021-9150(86)90143-7. [DOI] [PubMed] [Google Scholar]
  15. Hurt-Camejo E., Olsson U., Wiklund O., Bondjers G., Camejo G. Cellular consequences of the association of apoB lipoproteins with proteoglycans. Potential contribution to atherogenesis. Arterioscler Thromb Vasc Biol. 1997 Jun;17(6):1011–1017. doi: 10.1161/01.atv.17.6.1011. [DOI] [PubMed] [Google Scholar]
  16. Hurt E., Camejo G. Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis. 1987 Oct;67(2-3):115–126. doi: 10.1016/0021-9150(87)90272-3. [DOI] [PubMed] [Google Scholar]
  17. Ismail N. A., Alavi M. Z., Moore S. Lipoprotein-proteoglycan complexes from injured rabbit aortas accelerate lipoprotein uptake by arterial smooth muscle cells. Atherosclerosis. 1994 Jan;105(1):79–87. doi: 10.1016/0021-9150(94)90010-8. [DOI] [PubMed] [Google Scholar]
  18. Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
  19. Ji Z. S., Fazio S., Mahley R. W. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia. J Biol Chem. 1994 May 6;269(18):13421–13428. [PubMed] [Google Scholar]
  20. Linden T., Bondjers G., Camejo G., Bergstrand R., Wilhelmsen L., Wiklund O. Affinity of LDL to a human arterial proteoglycan among male survivors of myocardial infarction. Eur J Clin Invest. 1989 Feb;19(1):38–44. doi: 10.1111/j.1365-2362.1989.tb00193.x. [DOI] [PubMed] [Google Scholar]
  21. Linton M. F., Farese R. V., Jr, Chiesa G., Grass D. S., Chin P., Hammer R. E., Hobbs H. H., Young S. G. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J Clin Invest. 1993 Dec;92(6):3029–3037. doi: 10.1172/JCI116927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ludwig E. H., Hopkins P. N., Allen A., Wu L. L., Williams R. R., Anderson J. L., Ward R. H., Lalouel J. M., Innerarity T. L. Association of genetic variations in apolipoprotein B with hypercholesterolemia, coronary artery disease, and receptor binding of low density lipoproteins. J Lipid Res. 1997 Jul;38(7):1361–1373. [PubMed] [Google Scholar]
  23. Mahley R. W., Innerarity T. L., Pitas R. E., Weisgraber K. H., Brown J. H., Gross E. Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem. 1977 Oct 25;252(20):7279–7287. [PubMed] [Google Scholar]
  24. Mahley R. W., Weisgraber K. H., Innerarity T. L. Interaction of plasma lipoproteins containing apolipoproteins B and E with heparin and cell surface receptors. Biochim Biophys Acta. 1979 Oct 26;575(1):81–91. doi: 10.1016/0005-2760(79)90133-4. [DOI] [PubMed] [Google Scholar]
  25. McCormick S. P., Ng J. K., Véniant M., Borén J., Pierotti V., Flynn L. M., Grass D. S., ConnollyA, Young S. G. Transgenic mice that overexpress mouse apolipoprotein B. Evidence that the DNA sequences controlling intestinal expression of the apolipoprotein B gene are distant from the structural gene. J Biol Chem. 1996 May 17;271(20):11963–11970. doi: 10.1074/jbc.271.20.11963. [DOI] [PubMed] [Google Scholar]
  26. Milne R. W., Theolis R., Jr, Verdery R. B., Marcel Y. L. Characterization of monoclonal antibodies against human low density lipoprotein. Arteriosclerosis. 1983 Jan-Feb;3(1):23–30. doi: 10.1161/01.atv.3.1.23. [DOI] [PubMed] [Google Scholar]
  27. Nievelstein-Post P., Mottino G., Fogelman A., Frank J. An ultrastructural study of lipoprotein accumulation in cardiac valves of the rabbit. Arterioscler Thromb. 1994 Jul;14(7):1151–1161. doi: 10.1161/01.atv.14.7.1151. [DOI] [PubMed] [Google Scholar]
  28. Olsson U., Camejo G., Hurt-Camejo E., Elfsber K., Wiklund O., Bondjers G. Possible functional interactions of apolipoprotein B-100 segments that associate with cell proteoglycans and the ApoB/E receptor. Arterioscler Thromb Vasc Biol. 1997 Jan;17(1):149–155. doi: 10.1161/01.atv.17.1.149. [DOI] [PubMed] [Google Scholar]
  29. Paananen K., Kovanen P. T. Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules. J Biol Chem. 1994 Jan 21;269(3):2023–2031. [PubMed] [Google Scholar]
  30. Radhakrishnamurthy B., Srinivasan S. R., Vijayagopal P., Berenson G. S. Arterial wall proteoglycans--biological properties related to pathogenesis of atherosclerosis. Eur Heart J. 1990 Aug;11 (Suppl E):148–157. doi: 10.1093/eurheartj/11.suppl_e.148. [DOI] [PubMed] [Google Scholar]
  31. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol. 1995;57:791–804. doi: 10.1146/annurev.ph.57.030195.004043. [DOI] [PubMed] [Google Scholar]
  32. Schönherr E., Järveläinen H. T., Kinsella M. G., Sandell L. J., Wight T. N. Platelet-derived growth factor and transforming growth factor-beta 1 differentially affect the synthesis of biglycan and decorin by monkey arterial smooth muscle cells. Arterioscler Thromb. 1993 Jul;13(7):1026–1036. doi: 10.1161/01.atv.13.7.1026. [DOI] [PubMed] [Google Scholar]
  33. Schönherr E., Järveläinen H. T., Sandell L. J., Wight T. N. Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem. 1991 Sep 15;266(26):17640–17647. [PubMed] [Google Scholar]
  34. Tabas I., Li Y., Brocia R. W., Xu S. W., Swenson T. L., Williams K. J. Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein(a) retention and macrophage foam cell formation. J Biol Chem. 1993 Sep 25;268(27):20419–20432. [PubMed] [Google Scholar]
  35. Véniant M. M., Pierotti V., Newland D., Cham C. M., Sanan D. A., Walzem R. L., Young S. G. Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest. 1997 Jul 1;100(1):180–188. doi: 10.1172/JCI119511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Walton K. W., Williamson N. Histological and immunofluorescent studies on the evolution of the human atheromatous plaque. J Atheroscler Res. 1968 Jul-Aug;8(4):599–624. doi: 10.1016/s0368-1319(68)80020-1. [DOI] [PubMed] [Google Scholar]
  37. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  38. Weisgraber K. H., Rall S. C., Jr Human apolipoprotein B-100 heparin-binding sites. J Biol Chem. 1987 Aug 15;262(23):11097–11103. [PubMed] [Google Scholar]
  39. Weisgraber K. H., Rall S. C., Jr, Mahley R. W., Milne R. W., Marcel Y. L., Sparrow J. T. Human apolipoprotein E. Determination of the heparin binding sites of apolipoprotein E3. J Biol Chem. 1986 Feb 15;261(5):2068–2076. [PubMed] [Google Scholar]
  40. Williams K. J., Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995 May;15(5):551–561. doi: 10.1161/01.atv.15.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Yao Z. M., Blackhart B. D., Johnson D. F., Taylor S. M., Haubold K. W., McCarthy B. J. Elimination of apolipoprotein B48 formation in rat hepatoma cell lines transfected with mutant human apolipoprotein B cDNA constructs. J Biol Chem. 1992 Jan 15;267(2):1175–1182. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES