Abstract
Endothelial dysfunction associated with atherosclerosis has been attributed to alterations in the L-arginine-nitric oxide (NO)-cGMP pathway or to an excess of endothelin-1 (ET-1). The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have been shown to ameliorate endothelial function. However, the physiological basis of this observation is largely unknown. We investigated the effects of Atorvastatin and Simvastatin on the pre-proET-1 mRNA expression and ET-1 synthesis and on the endothelial NO synthase (eNOS) transcript and protein levels in bovine aortic endothelial cells. These agents inhibited pre-proET-1 mRNA expression in a concentration- and time-dependent fashion (60-70% maximum inhibition) and reduced immunoreactive ET-1 levels (25-50%). This inhibitory effect was maintained in the presence of oxidized LDL (1-50 microg/ml). No significant modification of pre-proET-1 mRNA half-life was observed. In addition, mevalonate, but not cholesterol, reversed the statin-mediated decrease of pre-proET-1 mRNA levels. eNOS mRNA expression was reduced by oxidized LDL in a dose-dependent fashion (up to 57% inhibition), whereas native LDL had no effect. Statins were able to prevent the inhibitory action exerted by oxidized LDL on eNOS mRNA and protein levels. Hence, these drugs might influence vascular tone by modulating the expression of endothelial vasoactive factors.
Full Text
The Full Text of this article is available as a PDF (752.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bocan T. M., Mazur M. J., Mueller S. B., Brown E. Q., Sliskovic D. R., O'Brien P. M., Creswell M. W., Lee H., Uhlendorf P. D., Roth B. D. Antiatherosclerotic activity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in cholesterol-fed rabbits: a biochemical and morphological evaluation. Atherosclerosis. 1994 Nov;111(1):127–142. doi: 10.1016/0021-9150(94)90198-8. [DOI] [PubMed] [Google Scholar]
- Bochkov V. N., Tkachuk V. A., Hahn A. W., Bernhardt J., Buhler F. R., Resink T. J. Concerted effects of lipoproteins and angiotensin II on signal transduction processes in vascular smooth muscle cells. Arterioscler Thromb. 1993 Sep;13(9):1261–1269. doi: 10.1161/01.atv.13.9.1261. [DOI] [PubMed] [Google Scholar]
- Boulanger C. M., Tanner F. C., Béa M. L., Hahn A. W., Werner A., Lüscher T. F. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res. 1992 Jun;70(6):1191–1197. doi: 10.1161/01.res.70.6.1191. [DOI] [PubMed] [Google Scholar]
- Bredt D. S., Snyder S. H. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990 Jan;87(2):682–685. doi: 10.1073/pnas.87.2.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin J. H., Azhar S., Hoffman B. B. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992 Jan;89(1):10–18. doi: 10.1172/JCI115549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Cooke J. P., Singer A. H., Tsao P., Zera P., Rowan R. A., Billingham M. E. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest. 1992 Sep;90(3):1168–1172. doi: 10.1172/JCI115937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creager M. A., Gallagher S. J., Girerd X. J., Coleman S. M., Dzau V. J., Cooke J. P. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992 Oct;90(4):1248–1253. doi: 10.1172/JCI115987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuthbert J. A., Lipsky P. E. Inhibition by 6-fluoromevalonate demonstrates that mevalonate or one of the mevalonate phosphates is necessary for lymphocyte proliferation. J Biol Chem. 1990 Oct 25;265(30):18568–18575. [PubMed] [Google Scholar]
- Cutts J. L., Bankhurst A. D. Reversal of lovastatin-mediated inhibition of natural killer cell cytotoxicity by interleukin 2. J Cell Physiol. 1990 Nov;145(2):244–252. doi: 10.1002/jcp.1041450208. [DOI] [PubMed] [Google Scholar]
- Dunzendorfer S., Rothbucher D., Schratzberger P., Reinisch N., Kähler C. M., Wiedermann C. J. Mevalonate-dependent inhibition of transendothelial migration and chemotaxis of human peripheral blood neutrophils by pravastatin. Circ Res. 1997 Dec;81(6):963–969. doi: 10.1161/01.res.81.6.963. [DOI] [PubMed] [Google Scholar]
- Egashira K., Hirooka Y., Kai H., Sugimachi M., Suzuki S., Inou T., Takeshita A. Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation. 1994 Jun;89(6):2519–2524. doi: 10.1161/01.cir.89.6.2519. [DOI] [PubMed] [Google Scholar]
- Eichstädt H. W., Eskötter H., Hoffman I., Amthauer H. W., Weidinger G. Improvement of myocardial perfusion by short-term fluvastatin therapy in coronary artery disease. Am J Cardiol. 1995 Jul 13;76(2):122A–125A. doi: 10.1016/s0002-9149(05)80033-5. [DOI] [PubMed] [Google Scholar]
- Farmer J. A., Gotto A. M., Jr Current and future therapeutic approaches to hyperlipidemia. Adv Pharmacol. 1996;35:79–114. doi: 10.1016/s1054-3589(08)60275-6. [DOI] [PubMed] [Google Scholar]
- Flowers M. A., Wang Y., Stewart R. J., Patel B., Marsden P. A. Reciprocal regulation of endothelin-1 and endothelial constitutive NOS in proliferating endothelial cells. Am J Physiol. 1995 Dec;269(6 Pt 2):H1988–H1997. doi: 10.1152/ajpheart.1995.269.6.H1988. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
- Grandaliano G., Biswas P., Choudhury G. G., Abboud H. E. Simvastatin inhibits PDGF-induced DNA synthesis in human glomerular mesangial cells. Kidney Int. 1993 Sep;44(3):503–508. doi: 10.1038/ki.1993.274. [DOI] [PubMed] [Google Scholar]
- Grünler J., Ericsson J., Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta. 1994 Jun 2;1212(3):259–277. doi: 10.1016/0005-2760(94)90200-3. [DOI] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison D. G., Armstrong M. L., Freiman P. C., Heistad D. D. Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J Clin Invest. 1987 Dec;80(6):1808–1811. doi: 10.1172/JCI113276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata K., Miki N., Kuroda Y., Sakoda T., Kawashima S., Yokoyama M. Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circ Res. 1995 Jun;76(6):958–962. doi: 10.1161/01.res.76.6.958. [DOI] [PubMed] [Google Scholar]
- Hirata Y. Endothelin peptides. Curr Opin Nephrol Hypertens. 1996 Jan;5(1):12–15. doi: 10.1097/00041552-199601000-00004. [DOI] [PubMed] [Google Scholar]
- Kowala M. C. The role of endothelin in the pathogenesis of atherosclerosis. Adv Pharmacol. 1997;37:299–318. doi: 10.1016/s1054-3589(08)60953-9. [DOI] [PubMed] [Google Scholar]
- Kugiyama K., Kerns S. A., Morrisett J. D., Roberts R., Henry P. D. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990 Mar 8;344(6262):160–162. doi: 10.1038/344160a0. [DOI] [PubMed] [Google Scholar]
- Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamas S., Michel T., Brenner B. M., Marsden P. A. Nitric oxide synthesis in endothelial cells: evidence for a pathway inducible by TNF-alpha. Am J Physiol. 1991 Oct;261(4 Pt 1):C634–C641. doi: 10.1152/ajpcell.1991.261.4.C634. [DOI] [PubMed] [Google Scholar]
- Lamas S., Michel T., Collins T., Brenner B. M., Marsden P. A. Effects of interferon-gamma on nitric oxide synthase activity and endothelin-1 production by vascular endothelial cells. J Clin Invest. 1992 Sep;90(3):879–887. doi: 10.1172/JCI115963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laufs U., Fata V. L., Liao J. K. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem. 1997 Dec 12;272(50):31725–31729. doi: 10.1074/jbc.272.50.31725. [DOI] [PubMed] [Google Scholar]
- Liao J. K., Shin W. S., Lee W. Y., Clark S. L. Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase. J Biol Chem. 1995 Jan 6;270(1):319–324. doi: 10.1074/jbc.270.1.319. [DOI] [PubMed] [Google Scholar]
- Marsden P. A., Brenner B. M. Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol. 1992 Apr;262(4 Pt 1):C854–C861. doi: 10.1152/ajpcell.1992.262.4.C854. [DOI] [PubMed] [Google Scholar]
- Marsden P. A., Brock T. A., Ballermann B. J. Glomerular endothelial cells respond to calcium-mobilizing agonists with release of EDRF. Am J Physiol. 1990 May;258(5 Pt 2):F1295–F1303. doi: 10.1152/ajprenal.1990.258.5.F1295. [DOI] [PubMed] [Google Scholar]
- Marsden P. A., Dorfman D. M., Collins T., Brenner B. M., Orkin S. H., Ballermann B. J. Regulated expression of endothelin 1 in glomerular capillary endothelial cells. Am J Physiol. 1991 Jul;261(1 Pt 2):F117–F125. doi: 10.1152/ajprenal.1991.261.1.F117. [DOI] [PubMed] [Google Scholar]
- Marsden P. A., Goligorsky M. S., Brenner B. M. Endothelial cell biology in relation to current concepts of vessel wall structure and function. J Am Soc Nephrol. 1991 Jan;1(7):931–948. doi: 10.1681/ASN.V17931. [DOI] [PubMed] [Google Scholar]
- Marsden P. A., Heng H. H., Scherer S. W., Stewart R. J., Hall A. V., Shi X. M., Tsui L. C., Schappert K. T. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993 Aug 15;268(23):17478–17488. [PubMed] [Google Scholar]
- Mathew V., Cannan C. R., Miller V. M., Barber D. A., Hasdai D., Schwartz R. S., Holmes D. R., Jr, Lerman A. Enhanced endothelin-mediated coronary vasoconstriction and attenuated basal nitric oxide activity in experimental hypercholesterolemia. Circulation. 1997 Sep 16;96(6):1930–1936. doi: 10.1161/01.cir.96.6.1930. [DOI] [PubMed] [Google Scholar]
- McPherson R., Tsoukas C., Baines M. G., Vost A., Melino M. R., Zupkis R. V., Pross H. F. Effects of lovastatin on natural killer cell function and other immunological parameters in man. J Clin Immunol. 1993 Nov;13(6):439–444. doi: 10.1007/BF00920019. [DOI] [PubMed] [Google Scholar]
- Michel T., Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997 Nov 1;100(9):2146–2152. doi: 10.1172/JCI119750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michel T., Li G. K., Busconi L. Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6252–6256. doi: 10.1073/pnas.90.13.6252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Nawrocki J. W., Weiss S. R., Davidson M. H., Sprecher D. L., Schwartz S. L., Lupien P. J., Jones P. H., Haber H. E., Black D. M. Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol. 1995 May;15(5):678–682. doi: 10.1161/01.atv.15.5.678. [DOI] [PubMed] [Google Scholar]
- Owens D., Collins P., Johnson A., Tomkin G. Cellular cholesterol metabolism in mitogen-stimulated lymphocytes--requirement for de novo synthesis. Biochim Biophys Acta. 1990 Feb 19;1051(2):138–143. doi: 10.1016/0167-4889(90)90185-g. [DOI] [PubMed] [Google Scholar]
- Pérez-Sala D., Collado-Escobar D., Mollinedo F. Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem. 1995 Mar 17;270(11):6235–6242. doi: 10.1074/jbc.270.11.6235. [DOI] [PubMed] [Google Scholar]
- Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson L. J., Weremowicz S., Morton C. C., Michel T. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene. Genomics. 1994 Jan 15;19(2):350–357. doi: 10.1006/geno.1994.1068. [DOI] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
- Saura M., López S., Rodríguez Puyol M., Rodríguez Puyol D., Lamas S. Regulation of inducible nitric oxide synthase expression in rat mesangial cells and isolated glomeruli. Kidney Int. 1995 Feb;47(2):500–509. doi: 10.1038/ki.1995.63. [DOI] [PubMed] [Google Scholar]
- Schmieder R. E., Schobel H. P. Is endothelial dysfunction reversible? Am J Cardiol. 1995 Jul 13;76(2):117A–121A. doi: 10.1016/s0002-9149(05)80032-3. [DOI] [PubMed] [Google Scholar]
- Schuh J., Fairclough G. F., Jr, Haschemeyer R. H. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3173–3177. doi: 10.1073/pnas.75.7.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanton L. W., White R. T., Bryant C. M., Protter A. A., Endemann G. A macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein. J Biol Chem. 1992 Nov 5;267(31):22446–22451. [PubMed] [Google Scholar]
- Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987 Mar 15;262(8):3603–3608. [PubMed] [Google Scholar]
- Treasure C. B., Klein J. L., Weintraub W. S., Talley J. D., Stillabower M. E., Kosinski A. S., Zhang J., Boccuzzi S. J., Cedarholm J. C., Alexander R. W. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med. 1995 Feb 23;332(8):481–487. doi: 10.1056/NEJM199502233320801. [DOI] [PubMed] [Google Scholar]
- Vaughan C. J., Murphy M. B., Buckley B. M. Statins do more than just lower cholesterol. Lancet. 1996 Oct 19;348(9034):1079–1082. doi: 10.1016/S0140-6736(96)05190-2. [DOI] [PubMed] [Google Scholar]
- Webb D. Physiological role of the endothelin system in human cardiovascular and renal haemodynamics. Curr Opin Nephrol Hypertens. 1997 Jan;6(1):69–73. doi: 10.1097/00041552-199701000-00013. [DOI] [PubMed] [Google Scholar]
- Wilcox J. N., Subramanian R. R., Sundell C. L., Tracey W. R., Pollock J. S., Harrison D. G., Marsden P. A. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2479–2488. doi: 10.1161/01.atv.17.11.2479. [DOI] [PubMed] [Google Scholar]
- Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zembowicz A., Tang J. L., Wu K. K. Transcriptional induction of endothelial nitric oxide synthase type III by lysophosphatidylcholine. J Biol Chem. 1995 Jul 14;270(28):17006–17010. doi: 10.1074/jbc.270.28.17006. [DOI] [PubMed] [Google Scholar]
- Ziesche R., Petkov V., Williams J., Zakeri S. M., Mosgöller W., Knöfler M., Block L. H. Lipopolysaccharide and interleukin 1 augment the effects of hypoxia and inflammation in human pulmonary arterial tissue. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12478–12483. doi: 10.1073/pnas.93.22.12478. [DOI] [PMC free article] [PubMed] [Google Scholar]