Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 15;101(12):2780–2789. doi: 10.1172/JCI2132

Nitric oxide inhibition induces early activation of type I collagen gene in renal resistance vessels and glomeruli in transgenic mice. Role of endothelin.

C Chatziantoniou 1, J J Boffa 1, R Ardaillou 1, J C Dussaule 1
PMCID: PMC508869  PMID: 9637712

Abstract

Hypertension is often associated with the development of nephroangio- and glomerulo-sclerosis. This pathophysiological process is due to increased extracellular matrix protein, particularly type I collagen, accumulation. This study investigated whether nitric oxide (NO) synthesis is involved in the mechanism(s) regulating activation of the collagen I gene in afferent arterioles and glomeruli. Experiments were performed on transgenic mice harboring the luciferase gene under the control of the collagen I-alpha2 chain promoter [procolalpha2(I)]. Measurements of luciferase activity provide highly sensitive estimates of collagen I gene activation. NO synthesis was inhibited by NG-nitro-L-arginine methyl ester (L-NAME) (20 mg/kg per day) for a period of up to 14 wk. Systolic blood pressure was increased after 6 wk of treatment (117+/-2 versus 129+/-2 mmHg, P < 0.01) and reached a plateau after 10 wk (around 160 mmHg). Luciferase activity was increased in freshly isolated afferent arterioles and glomeruli as early as week 4 of L-NAME treatment (150 and 200% of baseline, P < 0.01, respectively). The activation of procolalpha2(I) became more pronounced with time, and at 14 wk increased four- and tenfold compared with controls in afferent arterioles and glomeruli, respectively (P < 0.001). In contrast, luciferase activity remained unchanged in aorta and heart up to 8 wk and was increased thereafter. Increased histochemical staining for extracellular matrix deposition, and particularly of collagen I, was detected in afferent arterioles and glomeruli after 10 wk of L-NAME treatment. This fibrogenic process was accompanied by an increased urinary excretion rate of endothelin. In separate experiments, the stimulatory effect of L-NAME on collagen I gene activation was abolished when animals were treated with bosentan, an endothelin receptor antagonist. Similarly, bosentan reduced the increased extracellular matrix deposition in afferent arterioles and glomeruli during NO inhibition. Interestingly, bosentan had no effect on the L-NAME- induced increase of systolic pressure. These data indicate that NO inhibition induces an early activation of the collagen I gene in afferent arterioles and glomeruli. This activation in the kidney precedes the increase in blood pressure and the procolalpha2(I) activation in heart and aorta, suggesting a specific renal effect of NO blockade on collagen I gene expression that is independent of increased blood pressure and, at least partly, mediated through stimulation of the endothelin receptor. Use of procolalpha2(I) transgenic mice provides a novel and efficient model to study the pathophysiological mechanism(s) regulating renal fibrosis.

Full Text

The Full Text of this article is available as a PDF (722.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnal J. F., Michel J. B., Harrison D. G. Nitric oxide in the pathogenesis of hypertension. Curr Opin Nephrol Hypertens. 1995 Mar;4(2):182–188. doi: 10.1097/00041552-199503000-00012. [DOI] [PubMed] [Google Scholar]
  2. Arnal J. F., Warin L., Michel J. B. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Invest. 1992 Aug;90(2):647–652. doi: 10.1172/JCI115906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baylis C., Mitruka B., Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest. 1992 Jul;90(1):278–281. doi: 10.1172/JCI115849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benigni A., Perico N., Gaspari F., Zoja C., Bellizzi L., Gabanelli M., Remuzzi G. Increased renal endothelin production in rats with reduced renal mass. Am J Physiol. 1991 Mar;260(3 Pt 2):F331–F339. doi: 10.1152/ajprenal.1991.260.3.F331. [DOI] [PubMed] [Google Scholar]
  5. Benigni A., Zoja C., Corna D., Orisio S., Longaretti L., Bertani T., Remuzzi G. A specific endothelin subtype A receptor antagonist protects against injury in renal disease progression. Kidney Int. 1993 Aug;44(2):440–444. doi: 10.1038/ki.1993.263. [DOI] [PubMed] [Google Scholar]
  6. Benigni A., Zola C., Corna D., Orisio S., Facchinetti D., Benati L., Remuzzi G. Blocking both type A and B endothelin receptors in the kidney attenuates renal injury and prolongs survival in rats with remnant kidney. Am J Kidney Dis. 1996 Mar;27(3):416–423. doi: 10.1016/s0272-6386(96)90366-2. [DOI] [PubMed] [Google Scholar]
  7. Bou-Gharios G., Garrett L. A., Rossert J., Niederreither K., Eberspaecher H., Smith C., Black C., Crombrugghe B. A potent far-upstream enhancer in the mouse pro alpha 2(I) collagen gene regulates expression of reporter genes in transgenic mice. J Cell Biol. 1996 Sep;134(5):1333–1344. doi: 10.1083/jcb.134.5.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boulanger C., Lüscher T. F. Release of endothelin from the porcine aorta. Inhibition by endothelium-derived nitric oxide. J Clin Invest. 1990 Feb;85(2):587–590. doi: 10.1172/JCI114477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bouriquet N., Dupont M., Herizi A., Mimran A., Casellas D. Preglomerular sudanophilia in L-NAME hypertensive rats: involvement of endothelin. Hypertension. 1996 Mar;27(3 Pt 1):382–391. doi: 10.1161/01.hyp.27.3.382. [DOI] [PubMed] [Google Scholar]
  10. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  11. Chatziantoniou C., Arendshorst W. J. Angiotensin receptor sites in renal vasculature of rats developing genetic hypertension. Am J Physiol. 1993 Dec;265(6 Pt 2):F853–F862. doi: 10.1152/ajprenal.1993.265.6.F853. [DOI] [PubMed] [Google Scholar]
  12. Chatziantoniou C., Pauti M. D., Pinet F., Promeneur D., Dussaule J. C., Ardaillou R. Regulation of renin release is impaired after nitric oxide inhibition. Kidney Int. 1996 Mar;49(3):626–633. doi: 10.1038/ki.1996.90. [DOI] [PubMed] [Google Scholar]
  13. Chua B. H., Krebs C. J., Chua C. C., Diglio C. A. Endothelin stimulates protein synthesis in smooth muscle cells. Am J Physiol. 1992 Apr;262(4 Pt 1):E412–E416. doi: 10.1152/ajpendo.1992.262.4.E412. [DOI] [PubMed] [Google Scholar]
  14. Clozel M., Breu V., Gray G. A., Kalina B., Löffler B. M., Burri K., Cassal J. M., Hirth G., Müller M., Neidhart W. Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J Pharmacol Exp Ther. 1994 Jul;270(1):228–235. [PubMed] [Google Scholar]
  15. Craven P. A., Studer R. K., Felder J., Phillips S., DeRubertis F. R. Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells. Diabetes. 1997 Apr;46(4):671–681. doi: 10.2337/diab.46.4.671. [DOI] [PubMed] [Google Scholar]
  16. Garg U. C., Hassid A. Inhibition of rat mesangial cell mitogenesis by nitric oxide-generating vasodilators. Am J Physiol. 1989 Jul;257(1 Pt 2):F60–F66. doi: 10.1152/ajprenal.1989.257.1.F60. [DOI] [PubMed] [Google Scholar]
  17. Garg U. C., Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989 May;83(5):1774–1777. doi: 10.1172/JCI114081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hayakawa H., Raij L. The link among nitric oxide synthase activity, endothelial function, and aortic and ventricular hypertrophy in hypertension. Hypertension. 1997 Jan;29(1 Pt 2):235–241. doi: 10.1161/01.hyp.29.1.235. [DOI] [PubMed] [Google Scholar]
  19. Hirata Y., Takagi Y., Fukuda Y., Marumo F. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis. 1989 Aug;78(2-3):225–228. doi: 10.1016/0021-9150(89)90227-x. [DOI] [PubMed] [Google Scholar]
  20. Hocher B., Thöne-Reineke C., Rohmeiss P., Schmager F., Slowinski T., Burst V., Siegmund F., Quertermous T., Bauer C., Neumayer H. H. Endothelin-1 transgenic mice develop glomerulosclerosis, interstitial fibrosis, and renal cysts but not hypertension. J Clin Invest. 1997 Mar 15;99(6):1380–1389. doi: 10.1172/JCI119297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ketteler M., Border W. A., Noble N. A. Cytokines and L-arginine in renal injury and repair. Am J Physiol. 1994 Aug;267(2 Pt 2):F197–F207. doi: 10.1152/ajprenal.1994.267.2.F197. [DOI] [PubMed] [Google Scholar]
  22. Li J. S., Larivière R., Schiffrin E. L. Effect of a nonselective endothelin antagonist on vascular remodeling in deoxycorticosterone acetate-salt hypertensive rats. Evidence for a role of endothelin in vascular hypertrophy. Hypertension. 1994 Aug;24(2):183–188. doi: 10.1161/01.hyp.24.2.183. [DOI] [PubMed] [Google Scholar]
  23. Li J. S., Schiffrin E. L. Effect of chronic treatment of adult spontaneously hypertensive rats with an endothelin receptor antagonist. Hypertension. 1995 Apr;25(4 Pt 1):495–500. doi: 10.1161/01.hyp.25.4.495. [DOI] [PubMed] [Google Scholar]
  24. Moreau P., Takase H., Küng C. F., Shaw S., Lüscher T. F. Blood pressure and vascular effects of endothelin blockade in chronic nitric oxide-deficient hypertension. Hypertension. 1997 Mar;29(3):763–769. doi: 10.1161/01.hyp.29.3.763. [DOI] [PubMed] [Google Scholar]
  25. Moreau P., d'Uscio L. V., Shaw S., Takase H., Barton M., Lüscher T. F. Angiotensin II increases tissue endothelin and induces vascular hypertrophy: reversal by ET(A)-receptor antagonist. Circulation. 1997 Sep 2;96(5):1593–1597. doi: 10.1161/01.cir.96.5.1593. [DOI] [PubMed] [Google Scholar]
  26. Morel-Maroger Striker L., Killen P. D., Chi E., Striker G. E. The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab Invest. 1984 Aug;51(2):181–192. [PubMed] [Google Scholar]
  27. Nakamura T., Ebihara I., Tomino Y., Koide H. Effect of a specific endothelin A receptor antagonist on murine lupus nephritis. Kidney Int. 1995 Feb;47(2):481–489. doi: 10.1038/ki.1995.61. [DOI] [PubMed] [Google Scholar]
  28. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  29. Pollock D. M., Polakowski J. S. ETA receptor blockade prevents hypertension associated with exogenous endothelin-1 but not renal mass reduction in the rat. J Am Soc Nephrol. 1997 Jul;8(7):1054–1060. doi: 10.1681/ASN.V871054. [DOI] [PubMed] [Google Scholar]
  30. Raij L., Baylis C. Glomerular actions of nitric oxide. Kidney Int. 1995 Jul;48(1):20–32. doi: 10.1038/ki.1995.262. [DOI] [PubMed] [Google Scholar]
  31. Ribeiro M. O., Antunes E., de Nucci G., Lovisolo S. M., Zatz R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension. 1992 Sep;20(3):298–303. doi: 10.1161/01.hyp.20.3.298. [DOI] [PubMed] [Google Scholar]
  32. Rizvi M. A., Myers P. R. Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels. J Mol Cell Cardiol. 1997 Jul;29(7):1779–1789. doi: 10.1006/jmcc.1996.0480. [DOI] [PubMed] [Google Scholar]
  33. Simonson M. S., Wann S., Mené P., Dubyak G. R., Kester M., Nakazato Y., Sedor J. R., Dunn M. J. Endothelin stimulates phospholipase C, Na+/H+ exchange, c-fos expression, and mitogenesis in rat mesangial cells. J Clin Invest. 1989 Feb;83(2):708–712. doi: 10.1172/JCI113935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thompson A., Valeri C. R., Lieberthal W. Endothelin receptor A blockade alters hemodynamic response to nitric oxide inhibition in rats. Am J Physiol. 1995 Aug;269(2 Pt 2):H743–H748. doi: 10.1152/ajpheart.1995.269.2.H743. [DOI] [PubMed] [Google Scholar]
  35. Trachtman H., Futterweit S., Singhal P. Nitric oxide modulates the synthesis of extracellular matrix proteins in cultured rat mesangial cells. Biochem Biophys Res Commun. 1995 Feb 6;207(1):120–125. doi: 10.1006/bbrc.1995.1161. [DOI] [PubMed] [Google Scholar]
  36. Weisstuch J. M., Dworkin L. D. Does essential hypertension cause end-stage renal disease? Kidney Int Suppl. 1992 May;36:S33–S37. [PubMed] [Google Scholar]
  37. Xu Y., Arnal J. F., Hinglais N., Appay M. D., Laboulandine I., Bariety J., Michel J. B. Renal hypertensive angiopathy. Comparison between chronic NO suppression and DOCA-salt intoxication. Am J Hypertens. 1995 Feb;8(2):167–176. doi: 10.1016/0895-7061(94)00179-f. [DOI] [PubMed] [Google Scholar]
  38. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  39. Yoshioka K., Tohda M., Takemura T., Akano N., Matsubara K., Ooshima A., Maki S. Distribution of type I collagen in human kidney diseases in comparison with type III collagen. J Pathol. 1990 Oct;162(2):141–148. doi: 10.1002/path.1711620207. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES