Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jun 15;101(12):2790–2799. doi: 10.1172/JCI1325

A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation.

C M Rodrigues 1, G Fan 1, X Ma 1, B T Kren 1, C J Steer 1
PMCID: PMC508870  PMID: 9637713

Abstract

The hydrophilic bile salt ursodeoxycholic acid (UDCA) protects against the membrane-damaging effects associated with hydrophobic bile acids. This study was undertaken to (a) determine if UDCA inhibits apoptosis from deoxycholic acid (DCA), as well as from ethanol, TGF-beta1, Fas ligand, and okadaic acid; and to (b) determine whether mitochondrial membrane perturbation is modulated by UDCA. DCA induced significant hepatocyte apoptosis in vivo and in isolated hepatocytes determined by terminal transferase-mediated dUTP-digoxigenin nick end-labeling assay and nuclear staining, respectively (P < 0.001). Apoptosis in isolated rat hepatocytes increased 12-fold after incubation with 0.5% ethanol (P < 0.001). HuH-7 cells exhibited increased apoptosis with 1 nM TGF-beta1 (P < 0. 001) or DCA at >/= 100 microM (P < 0.001), as did Hep G2 cells after incubation with anti-Fas antibody (P < 0.001). Finally, incubation with okadaic acid induced significant apoptosis in HuH-7, Saos-2, Cos-7, and HeLa cells. Coadministration of UDCA with each of the apoptosis-inducing agents was associated with a 50-100% inhibition of apoptotic changes (P < 0.001) in all the cell types. Also, UDCA reduced the mitochondrial membrane permeability transition (MPT) in isolated mitochondria associated with both DCA and phenylarsine oxide by > 40 and 50%, respectively (P < 0.001). FACS(R) analysis revealed that the apoptosis-inducing agents decreased the mitochondrial transmembrane potential and increased reactive oxygen species production (P < 0.05). Coadministration of UDCA was associated with significant prevention of mitochondrial membrane alterations in all cell types. The results suggest that UDCA plays a central role in modulating the apoptotic threshold in both hepatocytes and nonliver cells, and inhibition of MPT is at least one pathway by which UDCA protects against apoptosis.

Full Text

The Full Text of this article is available as a PDF (286.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti A., Brunelli E., Risicato R., Cilluffo T., Jézéquel A. M., Orlandi F. Subcellular changes and apoptosis induced by ethanol in rat liver. J Hepatol. 1988 Apr;6(2):137–143. doi: 10.1016/s0168-8278(88)80024-2. [DOI] [PubMed] [Google Scholar]
  2. Botla R., Spivey J. R., Aguilar H., Bronk S. F., Gores G. J. Ursodeoxycholate (UDCA) inhibits the mitochondrial membrane permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J Pharmacol Exp Ther. 1995 Feb;272(2):930–938. [PubMed] [Google Scholar]
  3. Bouscarel B., Ceryak S., Gettys T. W., Fromm H., Noonan F. Alteration of cAMP-mediated hormonal responsiveness by bile acids in cells of nonhepatic origin. Am J Physiol. 1995 Jun;268(6 Pt 1):G908–G916. doi: 10.1152/ajpgi.1995.268.6.G908. [DOI] [PubMed] [Google Scholar]
  4. Carter W. O., Narayanan P. K., Robinson J. P. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol. 1994 Feb;55(2):253–258. doi: 10.1002/jlb.55.2.253. [DOI] [PubMed] [Google Scholar]
  5. Cathcart R., Schwiers E., Ames B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem. 1983 Oct 1;134(1):111–116. doi: 10.1016/0003-2697(83)90270-1. [DOI] [PubMed] [Google Scholar]
  6. Chazouillères O., Poupon R., Capron J. P., Metman E. H., Dhumeaux D., Amouretti M., Couzigou P., Labayle D., Trinchet J. C. Ursodeoxycholic acid for primary sclerosing cholangitis. J Hepatol. 1990 Jul;11(1):120–123. doi: 10.1016/0168-8278(90)90281-u. [DOI] [PubMed] [Google Scholar]
  7. Columbano A. Cell death: current difficulties in discriminating apoptosis from necrosis in the context of pathological processes in vivo. J Cell Biochem. 1995 Jun;58(2):181–190. doi: 10.1002/jcb.240580207. [DOI] [PubMed] [Google Scholar]
  8. Earnest D. L., Holubec H., Wali R. K., Jolley C. S., Bissonette M., Bhattacharyya A. K., Roy H., Khare S., Brasitus T. A. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res. 1994 Oct 1;54(19):5071–5074. [PubMed] [Google Scholar]
  9. Fan G., Ma X., Kren B. T., Steer C. J. The retinoblastoma gene product inhibits TGF-beta1 induced apoptosis in primary rat hepatocytes and human HuH-7 hepatoma cells. Oncogene. 1996 May 2;12(9):1909–1919. [PubMed] [Google Scholar]
  10. Goldin R. D., Hunt N. C., Clark J., Wickramasinghe S. N. Apoptotic bodies in a murine model of alcoholic liver disease: reversibility of ethanol-induced changes. J Pathol. 1993 Sep;171(1):73–76. doi: 10.1002/path.1711710115. [DOI] [PubMed] [Google Scholar]
  11. Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
  12. Heuman D. M., Bajaj R. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastroenterology. 1994 May;106(5):1333–1341. doi: 10.1016/0016-5085(94)90027-2. [DOI] [PubMed] [Google Scholar]
  13. Heuman D. M., Mills A. S., McCall J., Hylemon P. B., Pandak W. M., Vlahcevic Z. R. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. In vivo studies in the rat. Gastroenterology. 1991 Jan;100(1):203–211. doi: 10.1016/0016-5085(91)90602-h. [DOI] [PubMed] [Google Scholar]
  14. Jacobson M. D., Burne J. F., Raff M. C. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 1994 Apr 15;13(8):1899–1910. doi: 10.1002/j.1460-2075.1994.tb06459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones B. A., Rao Y. P., Stravitz R. T., Gores G. J. Bile salt-induced apoptosis of hepatocytes involves activation of protein kinase C. Am J Physiol. 1997 May;272(5 Pt 1):G1109–G1115. doi: 10.1152/ajpgi.1997.272.5.G1109. [DOI] [PubMed] [Google Scholar]
  16. Jänicke R. U., Walker P. A., Lin X. Y., Porter A. G. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 1996 Dec 16;15(24):6969–6978. [PMC free article] [PubMed] [Google Scholar]
  17. Kandell R. L., Bernstein C. Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer. 1991;16(3-4):227–238. doi: 10.1080/01635589109514161. [DOI] [PubMed] [Google Scholar]
  18. Koga H., Sakisaka S., Ohishi M., Sata M., Tanikawa K. Nuclear DNA fragmentation and expression of Bcl-2 in primary biliary cirrhosis. Hepatology. 1997 May;25(5):1077–1084. doi: 10.1002/hep.510250505. [DOI] [PubMed] [Google Scholar]
  19. Kren B. T., Rodrigues C. M., Setchell K. D., Steer C. J. Posttranscriptional regulation of mRNA levels in rat liver associated with deoxycholic acid feeding. Am J Physiol. 1995 Dec;269(6 Pt 1):G961–G973. doi: 10.1152/ajpgi.1995.269.6.G961. [DOI] [PubMed] [Google Scholar]
  20. Kroemer G., Petit P., Zamzami N., Vayssière J. L., Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995 Oct;9(13):1277–1287. doi: 10.1096/fasebj.9.13.7557017. [DOI] [PubMed] [Google Scholar]
  21. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
  22. Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
  23. Kwo P., Patel T., Bronk S. F., Gores G. J. Nuclear serine protease activity contributes to bile acid-induced apoptosis in hepatocytes. Am J Physiol. 1995 Apr;268(4 Pt 1):G613–G621. doi: 10.1152/ajpgi.1995.268.4.G613. [DOI] [PubMed] [Google Scholar]
  24. Mariash C. N., Seelig S., Schwartz H. L., Oppenheimer J. H. Rapid synergistic interaction between thyroid hormone and carbohydrate on mRNAS14 induction. J Biol Chem. 1986 Jul 25;261(21):9583–9586. [PubMed] [Google Scholar]
  25. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  26. Oberhammer F. A., Pavelka M., Sharma S., Tiefenbacher R., Purchio A. F., Bursch W., Schulte-Hermann R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5408–5412. doi: 10.1073/pnas.89.12.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ogasawara J., Watanabe-Fukunaga R., Adachi M., Matsuzawa A., Kasugai T., Kitamura Y., Itoh N., Suda T., Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature. 1993 Aug 26;364(6440):806–809. doi: 10.1038/364806a0. [DOI] [PubMed] [Google Scholar]
  28. Ortiz A., Ziyadeh F. N., Neilson E. G. Expression of apoptosis-regulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J Investig Med. 1997 Feb;45(2):50–56. [PubMed] [Google Scholar]
  29. Pastorino J. G., Snyder J. W., Serroni A., Hoek J. B., Farber J. L. Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem. 1993 Jul 5;268(19):13791–13798. [PubMed] [Google Scholar]
  30. Patel T., Bronk S. F., Gores G. J. Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. J Clin Invest. 1994 Dec;94(6):2183–2192. doi: 10.1172/JCI117579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Patel T., Gores G. J. Apoptosis and hepatobiliary disease. Hepatology. 1995 Jun;21(6):1725–1741. doi: 10.1002/hep.1840210635. [DOI] [PubMed] [Google Scholar]
  32. Patel T., Gores G. J. Inhibition of bile-salt-induced hepatocyte apoptosis by the antioxidant lazaroid U83836E. Toxicol Appl Pharmacol. 1997 Jan;142(1):116–122. doi: 10.1006/taap.1996.8031. [DOI] [PubMed] [Google Scholar]
  33. Patel T., Gores G. J., Kaufmann S. H. The role of proteases during apoptosis. FASEB J. 1996 Apr;10(5):587–597. doi: 10.1096/fasebj.10.5.8621058. [DOI] [PubMed] [Google Scholar]
  34. Podda M., Ghezzi C., Battezzati P. M., Crosignani A., Zuin M., Roda A. Effects of ursodeoxycholic acid and taurine on serum liver enzymes and bile acids in chronic hepatitis. Gastroenterology. 1990 Apr;98(4):1044–1050. doi: 10.1016/0016-5085(90)90032-v. [DOI] [PubMed] [Google Scholar]
  35. Poupon R. E., Poupon R., Balkau B. Ursodiol for the long-term treatment of primary biliary cirrhosis. The UDCA-PBC Study Group. N Engl J Med. 1994 May 12;330(19):1342–1347. doi: 10.1056/NEJM199405123301903. [DOI] [PubMed] [Google Scholar]
  36. Quist R. G., Ton-Nu H. T., Lillienau J., Hofmann A. F., Barrett K. E. Activation of mast cells by bile acids. Gastroenterology. 1991 Aug;101(2):446–456. doi: 10.1016/0016-5085(91)90024-f. [DOI] [PubMed] [Google Scholar]
  37. Reed J. C. Double identity for proteins of the Bcl-2 family. Nature. 1997 Jun 19;387(6635):773–776. doi: 10.1038/42867. [DOI] [PubMed] [Google Scholar]
  38. Roberts L. R., Kurosawa H., Bronk S. F., Fesmier P. J., Agellon L. B., Leung W. Y., Mao F., Gores G. J. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology. 1997 Nov;113(5):1714–1726. doi: 10.1053/gast.1997.v113.pm9352877. [DOI] [PubMed] [Google Scholar]
  39. Schmucker D. L., Ohta M., Kanai S., Sato Y., Kitani K. Hepatic injury induced by bile salts: correlation between biochemical and morphological events. Hepatology. 1990 Nov;12(5):1216–1221. doi: 10.1002/hep.1840120523. [DOI] [PubMed] [Google Scholar]
  40. Schulze-Osthoff K., Walczak H., Dröge W., Krammer P. H. Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol. 1994 Oct;127(1):15–20. doi: 10.1083/jcb.127.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Setchell K. D., Rodrigues C. M., Podda M., Crosignani A. Metabolism of orally administered tauroursodeoxycholic acid in patients with primary biliary cirrhosis. Gut. 1996 Mar;38(3):439–446. doi: 10.1136/gut.38.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sokol R. J., Devereaux M., Mierau G. W., Hambidge K. M., Shikes R. H. Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modification by vitamin E deficiency. Gastroenterology. 1990 Oct;99(4):1061–1071. doi: 10.1016/0016-5085(90)90627-d. [DOI] [PubMed] [Google Scholar]
  43. Spivey J. R., Bronk S. F., Gores G. J. Glycochenodeoxycholate-induced lethal hepatocellular injury in rat hepatocytes. Role of ATP depletion and cytosolic free calcium. J Clin Invest. 1993 Jul;92(1):17–24. doi: 10.1172/JCI116546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stefaniwsky A. B., Tint G. S., Speck J., Shefer S., Salen G. Ursodeoxycholic acid treatment of bile reflux gastritis. Gastroenterology. 1985 Nov;89(5):1000–1004. doi: 10.1016/0016-5085(85)90200-8. [DOI] [PubMed] [Google Scholar]
  45. Suchy F. J. Hepatocellular transport of bile acids. Semin Liver Dis. 1993 Aug;13(3):235–247. doi: 10.1055/s-2007-1007352. [DOI] [PubMed] [Google Scholar]
  46. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  47. Walajtys-Rhode E., Zapatero J., Moehren G., Hoek J. B. The role of the matrix calcium level in the enhancement of mitochondrial pyruvate carboxylation by glucagon pretreatment. J Biol Chem. 1992 Jan 5;267(1):370–379. [PubMed] [Google Scholar]
  48. Walker P. R., Kokileva L., LeBlanc J., Sikorska M. Detection of the initial stages of DNA fragmentation in apoptosis. Biotechniques. 1993 Dec;15(6):1032–1040. [PubMed] [Google Scholar]
  49. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  50. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssière J. L., Petit P. X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES