Abstract
Mutations in multiple cardiac sarcomeric proteins including myosin heavy chain (MyHC) and cardiac troponin T (cTnT) cause a dominant genetic heart disease, familial hypertrophic cardiomyopathy (FHC). Patients with mutations in these two genes have quite distinct clinical characteristics. Those with MyHC mutations demonstrate more significant and uniform cardiac hypertrophy and a variable frequency of sudden death. Patients with cTnT mutations generally exhibit mild or no hypertrophy, but a high frequency of sudden death at an early age. To understand the basis for these distinctions and to study the pathogenesis of the disease, we have created transgenic mice expressing a truncated mouse cTnT allele analogous to one found in FHC patients. Mice expressing truncated cTnT at low (< 5%) levels develop cardiomyopathy and their hearts are significantly smaller (18-27%) than wild type. These animals also exhibit significant diastolic dysfunction and milder systolic dysfunction. Animals that express higher levels of transgene protein die within 24 h of birth. Transgenic mouse hearts demonstrate myocellular disarray and have a reduced number of cardiac myocytes that are smaller in size. These studies suggest that multiple cellular mechanisms result in the human disease, which is generally characterized by mild hypertrophy, but, also, frequent sudden death.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anan R., Greve G., Thierfelder L., Watkins H., McKenna W. J., Solomon S., Vecchio C., Shono H., Nakao S., Tanaka H. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994 Jan;93(1):280–285. doi: 10.1172/JCI116957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forissier J. F., Carrier L., Farza H., Bonne G., Bercovici J., Richard P., Hainque B., Townsend P. J., Yacoub M. H., Fauré S. Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation. 1996 Dec 15;94(12):3069–3073. doi: 10.1161/01.cir.94.12.3069. [DOI] [PubMed] [Google Scholar]
- Geisterfer-Lowrance A. A., Christe M., Conner D. A., Ingwall J. S., Schoen F. J., Seidman C. E., Seidman J. G. A mouse model of familial hypertrophic cardiomyopathy. Science. 1996 May 3;272(5262):731–734. doi: 10.1126/science.272.5262.731. [DOI] [PubMed] [Google Scholar]
- Grupp I. L., Subramaniam A., Hewett T. E., Robbins J., Grupp G. Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am J Physiol. 1993 Oct;265(4 Pt 2):H1401–H1410. doi: 10.1152/ajpheart.1993.265.4.H1401. [DOI] [PubMed] [Google Scholar]
- Gulick J., Hewett T. E., Klevitsky R., Buck S. H., Moss R. L., Robbins J. Transgenic remodeling of the regulatory myosin light chains in the mammalian heart. Circ Res. 1997 May;80(5):655–664. doi: 10.1161/01.res.80.5.655. [DOI] [PubMed] [Google Scholar]
- Gwathmey J. K., Hajjar R. J., Solaro R. J. Contractile deactivation and uncoupling of crossbridges. Effects of 2,3-butanedione monoxime on mammalian myocardium. Circ Res. 1991 Nov;69(5):1280–1292. doi: 10.1161/01.res.69.5.1280. [DOI] [PubMed] [Google Scholar]
- Iso T., Arai M., Wada A., Kogure K., Suzuki T., Nagai R. Humoral factor(s) produced by pressure overload enhance cardiac hypertrophy and natriuretic peptide expression. Am J Physiol. 1997 Jul;273(1 Pt 2):H113–H118. doi: 10.1152/ajpheart.1997.273.1.H113. [DOI] [PubMed] [Google Scholar]
- Jacobson M. D., Weil M., Raff M. C. Programmed cell death in animal development. Cell. 1997 Feb 7;88(3):347–354. doi: 10.1016/s0092-8674(00)81873-5. [DOI] [PubMed] [Google Scholar]
- James T. N. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation. 1994 Jul;90(1):556–573. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lin D., Bobkova A., Homsher E., Tobacman L. S. Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. J Clin Invest. 1996 Jun 15;97(12):2842–2848. doi: 10.1172/JCI118740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maron B. J., Epstein S. E., Roberts W. C. Causes of sudden death in competitive athletes. J Am Coll Cardiol. 1986 Jan;7(1):204–214. doi: 10.1016/s0735-1097(86)80283-2. [DOI] [PubMed] [Google Scholar]
- Maron B. J. Triggers for sudden cardiac death in the athlete. Cardiol Clin. 1996 May;14(2):195–210. doi: 10.1016/s0733-8651(05)70273-3. [DOI] [PubMed] [Google Scholar]
- Moolman J. C., Corfield V. A., Posen B., Ngumbela K., Seidman C., Brink P. A., Watkins H. Sudden death due to troponin T mutations. J Am Coll Cardiol. 1997 Mar 1;29(3):549–555. doi: 10.1016/s0735-1097(96)00530-x. [DOI] [PubMed] [Google Scholar]
- Moore R. L., Musch T. I., Yelamarty R. V., Scaduto R. C., Jr, Semanchick A. M., Elensky M., Cheung J. Y. Chronic exercise alters contractility and morphology of isolated rat cardiac myocytes. Am J Physiol. 1993 May;264(5 Pt 1):C1180–C1189. doi: 10.1152/ajpcell.1993.264.5.C1180. [DOI] [PubMed] [Google Scholar]
- Nakao K., Minobe W., Roden R., Bristow M. R., Leinwand L. A. Myosin heavy chain gene expression in human heart failure. J Clin Invest. 1997 Nov 1;100(9):2362–2370. doi: 10.1172/JCI119776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qi M., Shannon T. R., Euler D. E., Bers D. M., Samarel A. M. Downregulation of sarcoplasmic reticulum Ca(2+)-ATPase during progression of left ventricular hypertrophy. Am J Physiol. 1997 May;272(5 Pt 2):H2416–H2424. doi: 10.1152/ajpheart.1997.272.5.H2416. [DOI] [PubMed] [Google Scholar]
- Raggi A., Grand R. J., Moir A. J., Perry S. V. Structure-function relationships in cardiac troponin T. Biochim Biophys Acta. 1989 Jul 27;997(1-2):135–143. doi: 10.1016/0167-4838(89)90145-3. [DOI] [PubMed] [Google Scholar]
- Sata M., Ikebe M. Functional analysis of the mutations in the human cardiac beta-myosin that are responsible for familial hypertrophic cardiomyopathy. Implication for the clinical outcome. J Clin Invest. 1996 Dec 15;98(12):2866–2873. doi: 10.1172/JCI119115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Solaro R. J., Pang D. C., Briggs F. N. The purification of cardiac myofibrils with Triton X-100. Biochim Biophys Acta. 1971 Aug 6;245(1):259–262. doi: 10.1016/0005-2728(71)90033-8. [DOI] [PubMed] [Google Scholar]
- Solomon S. D., Wolff S., Watkins H., Ridker P. M., Come P., McKenna W. J., Seidman C. E., Lee R. T. Left ventricular hypertrophy and morphology in familial hypertrophic cardiomyopathy associated with mutations of the beta-myosin heavy chain gene. J Am Coll Cardiol. 1993 Aug;22(2):498–505. doi: 10.1016/0735-1097(93)90055-6. [DOI] [PubMed] [Google Scholar]
- Sweeney H. L., Straceski A. J., Leinwand L. A., Tikunov B. A., Faust L. Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem. 1994 Jan 21;269(3):1603–1605. [PubMed] [Google Scholar]
- Tanguay R. L., Gallie D. R. Translational efficiency is regulated by the length of the 3' untranslated region. Mol Cell Biol. 1996 Jan;16(1):146–156. doi: 10.1128/mcb.16.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tantravahi J., Alvira M., Falck-Pedersen E. Characterization of the mouse beta maj globin transcription termination region: a spacing sequence is required between the poly(A) signal sequence and multiple downstream termination elements. Mol Cell Biol. 1993 Jan;13(1):578–587. doi: 10.1128/mcb.13.1.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thierfelder L., Watkins H., MacRae C., Lamas R., McKenna W., Vosberg H. P., Seidman J. G., Seidman C. E. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994 Jun 3;77(5):701–712. doi: 10.1016/0092-8674(94)90054-x. [DOI] [PubMed] [Google Scholar]
- Vikstrom K. L., Bohlmeyer T., Factor S. M., Leinwand L. A. Hypertrophy, pathology, and molecular markers of cardiac pathogenesis. Circ Res. 1998 Apr 20;82(7):773–778. doi: 10.1161/01.res.82.7.773. [DOI] [PubMed] [Google Scholar]
- Vikstrom K. L., Factor S. M., Leinwand L. A. Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol Med. 1996 Sep;2(5):556–567. [PMC free article] [PubMed] [Google Scholar]
- Vikstrom K. L., Leinwand L. A. Contractile protein mutations and heart disease. Curr Opin Cell Biol. 1996 Feb;8(1):97–105. doi: 10.1016/s0955-0674(96)80053-6. [DOI] [PubMed] [Google Scholar]
- Watkins H., McKenna W. J., Thierfelder L., Suk H. J., Anan R., O'Donoghue A., Spirito P., Matsumori A., Moravec C. S., Seidman J. G. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995 Apr 20;332(16):1058–1064. doi: 10.1056/NEJM199504203321603. [DOI] [PubMed] [Google Scholar]
- Watkins H., Rosenzweig A., Hwang D. S., Levi T., McKenna W., Seidman C. E., Seidman J. G. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992 Apr 23;326(17):1108–1114. doi: 10.1056/NEJM199204233261703. [DOI] [PubMed] [Google Scholar]
- Watkins H., Seidman C. E., Seidman J. G., Feng H. S., Sweeney H. L. Expression and functional assessment of a truncated cardiac troponin T that causes hypertrophic cardiomyopathy. Evidence for a dominant negative action. J Clin Invest. 1996 Dec 1;98(11):2456–2461. doi: 10.1172/JCI119063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolska B. M., Solaro R. J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am J Physiol. 1996 Sep;271(3 Pt 2):H1250–H1255. doi: 10.1152/ajpheart.1996.271.3.H1250. [DOI] [PubMed] [Google Scholar]