Abstract
In phenylketonuria (PKU), the enzyme phenylalanine hydroxylase is deficient, resulting in a decreased conversion of phenylalanine (Phe) into tyrosine (Tyr). The severity of the disease is expressed as the tolerance for Phe at 5 yr of age. In PKU patients it is assumed that the decreased conversion of Phe into Tyr is directly correlated with the tolerance for Phe. We investigated this correlation by an in vivo stable isotope study. The in vivo residual hydroxylation was quantitated using a primed continuous infusion of L-[ring- 2H5]Phe and L-[1-13C]Tyr and the determination of the isotopic enrichments of L-[ring-2H5]Phe, L-[ring-2H4]Tyr, and L-[1-13C]Tyr in plasma. Previous reports by Thompson and coworkers (Thompson, G.N., and D. Halliday. 1990. J. Clin. Invest. 86:317-322; Thompson, G.N., J.H. Walter, J.V. Leonard, and D. Halliday. 1990. Metabolism. 39:799-807; Treacy, E., J.J. Pitt, K. Seller, G.N. Thompson, S. Ramus, and R.G.H. Cotton. 1996. J. Inherited Metab. Dis. 19:595- 602), applying the same technique, showed normal in vivo hydroxylation rates of Phe in almost all PKU patients. Therefore, our study was divided up in two parts. First, the method was re-evaluated. Second, the correlation between the in vivo hydroxylation of Phe and the tolerance for Phe was tested in seven classical PKU patients. Very low (0.13- 0.95 micromol/kg per hour) and normal (4.11 and 6.33 micromol/kg per hour) conversion rates were found in patients and controls, respectively. Performing the infusion study twice in the same patient and wash-out studies of the labels at the end of the experiment in a patient and control showed that the method is applicable in PKU patients and gives consistent data. No significant correlation was observed between the in vivo hydroxylation rates and the tolerances. The results of this study, therefore, showed that within the group of patients with classical PKU, the tolerance does not depend on the in vivo hydroxylation.
Full Text
The Full Text of this article is available as a PDF (166.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartholomé K., Lutz P., Bickel H. Determination of phenylalanine hydroxylase activity in patients with phenylketonuria and hyperphenylalaninemia. Pediatr Res. 1975 Dec;9(12):899–903. doi: 10.1203/00006450-197512000-00006. [DOI] [PubMed] [Google Scholar]
- Blaskovics M. E., Schaeffler G. E., Hack S. Phenylalaninaemia. Differential diagnosis. Arch Dis Child. 1974 Nov;49(11):835–843. doi: 10.1136/adc.49.11.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke J. T., Bier D. M. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]phenylalanine and L-[1-13C] tyrosine in the postabsorptive state. Metabolism. 1982 Oct;31(10):999–1005. doi: 10.1016/0026-0495(82)90142-1. [DOI] [PubMed] [Google Scholar]
- Eisensmith R. C., Martinez D. R., Kuzmin A. I., Goltsov A. A., Brown A., Singh R., Elsas LJ I. I., Woo S. L. Molecular basis of phenylketonuria and a correlation between genotype and phenotype in a heterogeneous southeastern US population. Pediatrics. 1996 Apr;97(4):512–516. [PubMed] [Google Scholar]
- Güttler F. Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr Scand Suppl. 1980;280:1–80. [PubMed] [Google Scholar]
- Kindt E., Lunde H. A., Gjessing L. R., Halvorsen S., Lie S. O. Fasting plasma amino acid concentrations in PKU children on two different levels of protein intake. Acta Paediatr Scand. 1988 Jan;77(1):60–66. doi: 10.1111/j.1651-2227.1988.tb10598.x. [DOI] [PubMed] [Google Scholar]
- Krempf M., Hoerr R. A., Marks L., Young V. R. Phenylalanine flux in adult men: estimates with different tracers and route of administration. Metabolism. 1990 Jun;39(6):560–562. doi: 10.1016/0026-0495(90)90018-8. [DOI] [PubMed] [Google Scholar]
- Marchini J. S., Castillo L., Chapman T. E., Vogt J. A., Ajami A., Young V. R. Phenylalanine conversion to tyrosine: comparative determination with L-[ring-2H5]phenylalanine and L-[1-13C]phenylalanine as tracers in man. Metabolism. 1993 Oct;42(10):1316–1322. doi: 10.1016/0026-0495(93)90131-7. [DOI] [PubMed] [Google Scholar]
- Okano Y., Eisensmith R. C., Güttler F., Lichter-Konecki U., Konecki D. S., Trefz F. K., Dasovich M., Wang T., Henriksen K., Lou H. Molecular basis of phenotypic heterogeneity in phenylketonuria. N Engl J Med. 1991 May 2;324(18):1232–1238. doi: 10.1056/NEJM199105023241802. [DOI] [PubMed] [Google Scholar]
- Svensson E., von Döbeln U., Eisensmith R. C., Hagenfeldt L., Woo S. L. Relation between genotype and phenotype in Swedish phenylketonuria and hyperphenylalaninemia patients. Eur J Pediatr. 1993 Feb;152(2):132–139. doi: 10.1007/BF02072490. [DOI] [PubMed] [Google Scholar]
- Thompson G. N., Halliday D. Significant phenylalanine hydroxylation in vivo in patients with classical phenylketonuria. J Clin Invest. 1990 Jul;86(1):317–322. doi: 10.1172/JCI114701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson G. N., Walter J. H., Leonard J. V., Halliday D. In vivo enzyme activity in inborn errors of metabolism. Metabolism. 1990 Aug;39(8):799–807. doi: 10.1016/0026-0495(90)90122-s. [DOI] [PubMed] [Google Scholar]
- Treacy E. P., Delente J. J., Elkas G., Carter K., Lambert M., Waters P. J., Scriver C. R. Analysis of phenylalanine hydroxylase genotypes and hyperphenylalaninemia phenotypes using L-[1-13C]phenylalanine oxidation rates in vivo: a pilot study. Pediatr Res. 1997 Oct;42(4):430–435. doi: 10.1203/00006450-199710000-00002. [DOI] [PubMed] [Google Scholar]
- Treacy E., Pitt J. J., Seller K., Thompson G. N., Ramus S., Cotton R. G. In vivo disposal of phenylalanine in phenylketonuria: a study of two siblings. J Inherit Metab Dis. 1996;19(5):595–602. doi: 10.1007/BF01799832. [DOI] [PubMed] [Google Scholar]
- Trefz F. K., Erlenmaier T., Hunneman D. H., Bartholomé K., Lutz P. Sensitive in vivo assay of the phenylalanine hydroxylating system with a small intravenous dose of heptadeutero L-phenylalanine using high pressure liquid chromatography and capillary gas chromatography/mass fragmentography. Clin Chim Acta. 1979 Dec 17;99(3):211–230. doi: 10.1016/0009-8981(79)90264-x. [DOI] [PubMed] [Google Scholar]
- Zello G. A., Marai L., Tung A. S., Ball R. O., Pencharz P. B. Plasma and urine enrichments following infusion of L-[1-13C]phenylalanine and L-[ring-2H5]phenylalanine in humans: evidence for an isotope effect in renal tubular reabsorption. Metabolism. 1994 Apr;43(4):487–491. doi: 10.1016/0026-0495(94)90082-5. [DOI] [PubMed] [Google Scholar]
- van Spronsen F. J., van Rijn M., van Dijk T., Smit G. P., Reijngoud D. J., Berger R., Heymans H. S. Plasma phenylalanine and tyrosine responses to different nutritional conditions (fasting/postprandial) in patients with phenylketonuria: effect of sample timing. Pediatrics. 1993 Oct;92(4):570–573. [PubMed] [Google Scholar]
