Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):294–301. doi: 10.1172/JCI2769

Hypoplasia of pancreatic islets in transgenic mice expressing activin receptor mutants.

T Yamaoka 1, C Idehara 1, M Yano 1, T Matsushita 1, T Yamada 1, S Ii 1, M Moritani 1, J Hata 1, H Sugino 1, S Noji 1, M Itakura 1
PMCID: PMC508887  PMID: 9664070

Abstract

Activin, a member of the TGF-beta superfamily, regulates the growth and differentiation of a variety of cell types. Based on the expression of activin in pancreatic rudiments of rat embryos and stimulation of insulin secretion from adult rat pancreatic islets by activin, activin is implicated in the development and function of islets. To examine the significance of activin signaling in the fetal and postnatal development of islets, transgenic mice expressing a dominant negative form of activin receptor (dn-ActR) or a constitutively active form of activin receptor (ActR-T206D) in islets were generated together with the transgenic mice expressing intact activin receptor (intact ActR) as a negative control. Transgenic mice with both dn-ActR and ActR-T206D showed lower survival rates, smaller islet area, and lower insulin content in the whole pancreas with impaired glucose tolerance when compared with transgenic mice with intact ActR or littermates, but they showed the same alpha cell/beta cell ratios as their littermates. In addition to islet hypoplasia, the insulin response to glucose was severely impaired in dn-ActR transgenic mice. It is suggested that a precisely regulated intensity of activin signaling is necessary for the normal development of islets at the stage before differentiation into alpha and beta cells, and that activin plays a role in the postnatal functional maturation of islet beta cells.

Full Text

The Full Text of this article is available as a PDF (502.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlgren U., Pfaff S. L., Jessell T. M., Edlund T., Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997 Jan 16;385(6613):257–260. doi: 10.1038/385257a0. [DOI] [PubMed] [Google Scholar]
  2. Alpert S., Hanahan D., Teitelman G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell. 1988 Apr 22;53(2):295–308. doi: 10.1016/0092-8674(88)90391-1. [DOI] [PubMed] [Google Scholar]
  3. Attisano L., Wrana J. L., Montalvo E., Massagué J. Activation of signalling by the activin receptor complex. Mol Cell Biol. 1996 Mar;16(3):1066–1073. doi: 10.1128/mcb.16.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhushan A., Lin H. Y., Lodish H. F., Kintner C. R. The transforming growth factor beta type II receptor can replace the activin type II receptor in inducing mesoderm. Mol Cell Biol. 1994 Jun;14(6):4280–4285. doi: 10.1128/mcb.14.6.4280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Böttinger E. P., Jakubczak J. L., Roberts I. S., Mumy M., Hemmati P., Bagnall K., Merlino G., Wakefield L. M. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J. 1997 May 15;16(10):2621–2633. doi: 10.1093/emboj/16.10.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang C., Wilson P. A., Mathews L. S., Hemmati-Brivanlou A. A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development. 1997 Feb;124(4):827–837. doi: 10.1242/dev.124.4.827. [DOI] [PubMed] [Google Scholar]
  7. Dahl U., Sjødin A., Semb H. Cadherins regulate aggregation of pancreatic beta-cells in vivo. Development. 1996 Sep;122(9):2895–2902. doi: 10.1242/dev.122.9.2895. [DOI] [PubMed] [Google Scholar]
  8. Festenstein R., Tolaini M., Corbella P., Mamalaki C., Parrington J., Fox M., Miliou A., Jones M., Kioussis D. Locus control region function and heterochromatin-induced position effect variegation. Science. 1996 Feb 23;271(5252):1123–1125. doi: 10.1126/science.271.5252.1123. [DOI] [PubMed] [Google Scholar]
  9. Furukawa M., Eto Y., Kojima I. Expression of immunoreactive activin A in fetal rat pancreas. Endocr J. 1995 Feb;42(1):63–68. doi: 10.1507/endocrj.42.63. [DOI] [PubMed] [Google Scholar]
  10. Furukawa M., Nobusawa R., Shibata H., Eto Y., Kojima I. Initiation of insulin secretion in glucose-free medium by activin A. Mol Cell Endocrinol. 1995 Aug 30;113(1):83–87. doi: 10.1016/0303-7207(95)03617-g. [DOI] [PubMed] [Google Scholar]
  11. Goodman P. A., Medina-Martinez O., Fernandez-Mejia C. Identification of the human insulin negative regulatory element as a negative glucocorticoid response element. Mol Cell Endocrinol. 1996 Jul 1;120(2):139–146. doi: 10.1016/0303-7207(96)03830-0. [DOI] [PubMed] [Google Scholar]
  12. Graff J. M., Bansal A., Melton D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996 May 17;85(4):479–487. doi: 10.1016/s0092-8674(00)81249-0. [DOI] [PubMed] [Google Scholar]
  13. Green J. B., New H. V., Smith J. C. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell. 1992 Nov 27;71(5):731–739. doi: 10.1016/0092-8674(92)90550-v. [DOI] [PubMed] [Google Scholar]
  14. Gurdon J. B., Harger P., Mitchell A., Lemaire P. Activin signalling and response to a morphogen gradient. Nature. 1994 Oct 6;371(6497):487–492. doi: 10.1038/371487a0. [DOI] [PubMed] [Google Scholar]
  15. Halvorson L. M., DeCherney A. H. Inhibin, activin, and follistatin in reproductive medicine. Fertil Steril. 1996 Mar;65(3):459–469. doi: 10.1016/s0015-0282(16)58137-0. [DOI] [PubMed] [Google Scholar]
  16. Hemmati-Brivanlou A., Melton D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature. 1992 Oct 15;359(6396):609–614. doi: 10.1038/359609a0. [DOI] [PubMed] [Google Scholar]
  17. Hemmati-Brivanlou A., Thomsen G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet. 1995;17(1):78–89. doi: 10.1002/dvg.1020170109. [DOI] [PubMed] [Google Scholar]
  18. Jonsson J., Carlsson L., Edlund T., Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994 Oct 13;371(6498):606–609. doi: 10.1038/371606a0. [DOI] [PubMed] [Google Scholar]
  19. Lagna G., Hata A., Hemmati-Brivanlou A., Massagué J. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature. 1996 Oct 31;383(6603):832–836. doi: 10.1038/383832a0. [DOI] [PubMed] [Google Scholar]
  20. Ling N., Ying S. Y., Ueno N., Shimasaki S., Esch F., Hotta M., Guillemin R. Pituitary FSH is released by a heterodimer of the beta-subunits from the two forms of inhibin. Nature. 1986 Jun 19;321(6072):779–782. doi: 10.1038/321779a0. [DOI] [PubMed] [Google Scholar]
  21. Liu F., Ventura F., Doody J., Massagué J. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol Cell Biol. 1995 Jul;15(7):3479–3486. doi: 10.1128/mcb.15.7.3479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mashima H., Ohnishi H., Wakabayashi K., Mine T., Miyagawa J., Hanafusa T., Seno M., Yamada H., Kojima I. Betacellulin and activin A coordinately convert amylase-secreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest. 1996 Apr 1;97(7):1647–1654. doi: 10.1172/JCI118591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Milot E., Strouboulis J., Trimborn T., Wijgerde M., de Boer E., Langeveld A., Tan-Un K., Vergeer W., Yannoutsos N., Grosveld F. Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell. 1996 Oct 4;87(1):105–114. doi: 10.1016/s0092-8674(00)81327-6. [DOI] [PubMed] [Google Scholar]
  24. Mogami H., Kanzaki M., Nobusawa R., Zhang Y. Q., Furukawa M., Kojima I. Modulation of adenosine triphosphate-sensitive potassium channel and voltage-dependent calcium channel by activin A in HIT-T15 cells. Endocrinology. 1995 Jul;136(7):2960–2966. doi: 10.1210/endo.136.7.7789321. [DOI] [PubMed] [Google Scholar]
  25. Moritani M., Yoshimoto K., Ii S., Kondo M., Iwahana H., Yamaoka T., Sano T., Nakano N., Kikutani H., Itakura M. Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes. A gene therapy model for autoimmune diabetes. J Clin Invest. 1996 Oct 15;98(8):1851–1859. doi: 10.1172/JCI118986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ogawa K., Abe K., Kurosawa N., Kurohmaru M., Sugino H., Takahashi M., Hayashi Y. Expression of alpha, beta A and beta B subunits of inhibin or activin and follistatin in rat pancreatic islets. FEBS Lett. 1993 Mar 22;319(3):217–220. doi: 10.1016/0014-5793(93)80549-a. [DOI] [PubMed] [Google Scholar]
  27. Otonkoski T., Andersson S., Knip M., Simell O. Maturation of insulin response to glucose during human fetal and neonatal development. Studies with perifusion of pancreatic isletlike cell clusters. Diabetes. 1988 Mar;37(3):286–291. doi: 10.2337/diab.37.3.286. [DOI] [PubMed] [Google Scholar]
  28. Pituello F., Yamada G., Gruss P. Activin A inhibits Pax-6 expression and perturbs cell differentiation in the developing spinal cord in vitro. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6952–6956. doi: 10.1073/pnas.92.15.6952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reilly K. M., Melton D. A. Short-range signaling by candidate morphogens of the TGF beta family and evidence for a relay mechanism of induction. Cell. 1996 Sep 6;86(5):743–754. doi: 10.1016/s0092-8674(00)80149-x. [DOI] [PubMed] [Google Scholar]
  30. Ritvos O., Tuuri T., Erämaa M., Sainio K., Hildén K., Saxén L., Gilbert S. F. Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev. 1995 Apr;50(2-3):229–245. doi: 10.1016/0925-4773(94)00342-k. [DOI] [PubMed] [Google Scholar]
  31. Sander M., German M. S. The beta cell transcription factors and development of the pancreas. J Mol Med (Berl) 1997 May;75(5):327–340. doi: 10.1007/s001090050118. [DOI] [PubMed] [Google Scholar]
  32. Sanvito F., Herrera P. L., Huarte J., Nichols A., Montesano R., Orci L., Vassalli J. D. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development. 1994 Dec;120(12):3451–3462. doi: 10.1242/dev.120.12.3451. [DOI] [PubMed] [Google Scholar]
  33. Schubert D., Kimura H., LaCorbiere M., Vaughan J., Karr D., Fischer W. H. Activin is a nerve cell survival molecule. Nature. 1990 Apr 26;344(6269):868–870. doi: 10.1038/344868a0. [DOI] [PubMed] [Google Scholar]
  34. Schulte-Merker S., Smith J. C., Dale L. Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction? EMBO J. 1994 Aug 1;13(15):3533–3541. doi: 10.1002/j.1460-2075.1994.tb06660.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shibata H., Yasuda H., Sekine N., Mine T., Totsuka Y., Kojima I. Activin A increases intracellular free calcium concentrations in rat pancreatic islets. FEBS Lett. 1993 Aug 23;329(1-2):194–198. doi: 10.1016/0014-5793(93)80220-o. [DOI] [PubMed] [Google Scholar]
  36. Shull M. M., Ormsby I., Kier A. B., Pawlowski S., Diebold R. J., Yin M., Allen R., Sidman C., Proetzel G., Calvin D. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992 Oct 22;359(6397):693–699. doi: 10.1038/359693a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Slack J. M. Developmental biology of the pancreas. Development. 1995 Jun;121(6):1569–1580. doi: 10.1242/dev.121.6.1569. [DOI] [PubMed] [Google Scholar]
  38. Smith J. C., Price B. M., Van Nimmen K., Huylebroeck D. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature. 1990 Jun 21;345(6277):729–731. doi: 10.1038/345729a0. [DOI] [PubMed] [Google Scholar]
  39. Sosa-Pineda B., Chowdhury K., Torres M., Oliver G., Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. 1997 Mar 27;386(6623):399–402. doi: 10.1038/386399a0. [DOI] [PubMed] [Google Scholar]
  40. St-Onge L., Sosa-Pineda B., Chowdhury K., Mansouri A., Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997 May 22;387(6631):406–409. doi: 10.1038/387406a0. [DOI] [PubMed] [Google Scholar]
  41. Thomsen G., Woolf T., Whitman M., Sokol S., Vaughan J., Vale W., Melton D. A. Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell. 1990 Nov 2;63(3):485–493. doi: 10.1016/0092-8674(90)90445-k. [DOI] [PubMed] [Google Scholar]
  42. Totsuka Y., Tabuchi M., Kojima I., Shibai H., Ogata E. A novel action of activin A: stimulation of insulin secretion in rat pancreatic islets. Biochem Biophys Res Commun. 1988 Oct 14;156(1):335–339. doi: 10.1016/s0006-291x(88)80845-3. [DOI] [PubMed] [Google Scholar]
  43. Weinhaus A. J., Poronnik P., Cook D. I., Tuch B. E. Insulin secretagogues, but not glucose, stimulate an increase in [Ca2+]i in the fetal rat beta-cell. Diabetes. 1995 Jan;44(1):118–124. doi: 10.2337/diab.44.1.118. [DOI] [PubMed] [Google Scholar]
  44. Yamada T., Brunstedt J., Solomon T. Chronic effects of caerulein and secretin on the endocrine pancreas of the rat. Am J Physiol. 1983 May;244(5):G541–G545. doi: 10.1152/ajpgi.1983.244.5.G541. [DOI] [PubMed] [Google Scholar]
  45. Yamaoka T., Nishimura C., Yamashita K., Itakura M., Yamada T., Fujimoto J., Kokai Y. Acute onset of diabetic pathological changes in transgenic mice with human aldose reductase cDNA. Diabetologia. 1995 Mar;38(3):255–261. doi: 10.1007/BF00400627. [DOI] [PubMed] [Google Scholar]
  46. Yamashita H., ten Dijke P., Huylebroeck D., Sampath T. K., Andries M., Smith J. C., Heldin C. H., Miyazono K. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J Cell Biol. 1995 Jul;130(1):217–226. doi: 10.1083/jcb.130.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yasuda H., Inoue K., Shibata H., Takeuchi T., Eto Y., Hasegawa Y., Sekine N., Totsuka Y., Mine T., Ogata E. Existence of activin-A in A- and D-cells of rat pancreatic islet. Endocrinology. 1993 Aug;133(2):624–630. doi: 10.1210/endo.133.2.8344202. [DOI] [PubMed] [Google Scholar]
  48. Yu J., Shao L. E., Lemas V., Yu A. L., Vaughan J., Rivier J., Vale W. Importance of FSH-releasing protein and inhibin in erythrodifferentiation. Nature. 1987 Dec 24;330(6150):765–767. doi: 10.1038/330765a0. [DOI] [PubMed] [Google Scholar]
  49. Zhang Y., Feng X., We R., Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature. 1996 Sep 12;383(6596):168–172. doi: 10.1038/383168a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES