Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):322–328. doi: 10.1172/JCI2676

Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells.

L Genestier 1, R Paillot 1, S Fournel 1, C Ferraro 1, P Miossec 1, J P Revillard 1
PMCID: PMC508890  PMID: 9664073

Abstract

The folate antagonist methotrexate (MTX) is extensively used in graft-versus-host disease, rheumatoid arthritis, and other chronic inflammatory disorders. In addition to its antiinflammatory activity associated with increased release of adenosine, MTX exerts antiproliferative properties by inhibition of dihydrofolate reductase and other folate-dependent enzymes. However, the mechanisms of immunosuppressive properties associated with low-dose MTX treatments are still elusive. We report here that MTX (0.1-10 microM) induces apoptosis of in vitro activated T cells from human peripheral blood. PBL exposed to MTX for 8 h, then activated in drug-free medium, underwent apoptosis, which was completely abrogated by addition of folinic acid or thymidine. Apoptosis of activated T cells did not require interaction between CD95 (Fas, APO-1) and its ligand, and adenosine release accounted for only a small part of this MTX activity. Apoptosis required progression of activated T cells to the S phase of the cell cycle, as it was prevented by drugs or antibodies that interfere with IL-2 synthesis or signaling pathways. MTX achieved clonal deletion of activated T cells in mixed lymphocyte reactions. Finally, in vitro activation of PBL taken from rheumatoid arthritis patients after MTX injection resulted in apoptosis. Altogether, the data demonstrate that MTX can selectively delete activated peripheral blood T cells by a CD95-independent pathway. This property could be used as a new pharmacological end point to optimize dosage and timing of MTX administration. It may account for the immunosuppressive effects of low-dose MTX treatments.

Full Text

The Full Text of this article is available as a PDF (299.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allegra C. J., Drake J. C., Jolivet J., Chabner B. A. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4881–4885. doi: 10.1073/pnas.82.15.4881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almasan A., Yin Y., Kelly R. E., Lee E. Y., Bradley A., Li W., Bertino J. R., Wahl G. M. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5436–5440. doi: 10.1073/pnas.92.12.5436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benhamou L. E., Cazenave P. A., Sarthou P. Anti-immunoglobulins induce death by apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol. 1990 Jun;20(6):1405–1407. doi: 10.1002/eji.1830200630. [DOI] [PubMed] [Google Scholar]
  4. Brugnoni D., Airò P., Facchetti F., Blanzuoli L., Ugazio A. G., Cattaneo R., Notarangelo L. D. In vitro cell death of activated lymphocytes in Omenn's syndrome. Eur J Immunol. 1997 Nov;27(11):2765–2773. doi: 10.1002/eji.1830271104. [DOI] [PubMed] [Google Scholar]
  5. Chabner B. A., Allegra C. J., Curt G. A., Clendeninn N. J., Baram J., Koizumi S., Drake J. C., Jolivet J. Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest. 1985 Sep;76(3):907–912. doi: 10.1172/JCI112088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chao N. J., Schmidt G. M., Niland J. C., Amylon M. D., Dagis A. C., Long G. D., Nademanee A. P., Negrin R. S., O'Donnell M. R., Parker P. M. Cyclosporine, methotrexate, and prednisone compared with cyclosporine and prednisone for prophylaxis of acute graft-versus-host disease. N Engl J Med. 1993 Oct 21;329(17):1225–1230. doi: 10.1056/NEJM199310213291703. [DOI] [PubMed] [Google Scholar]
  7. Cronstein B. N., Eberle M. A., Gruber H. E., Levin R. I. Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2441–2445. doi: 10.1073/pnas.88.6.2441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cronstein B. N., Levin R. I., Belanoff J., Weissmann G., Hirschhorn R. Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J Clin Invest. 1986 Sep;78(3):760–770. doi: 10.1172/JCI112638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cronstein B. N., Naime D., Ostad E. The antiinflammatory mechanism of methotrexate. Increased adenosine release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J Clin Invest. 1993 Dec;92(6):2675–2682. doi: 10.1172/JCI116884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cronstein B. N., Rosenstein E. D., Kramer S. B., Weissmann G., Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol. 1985 Aug;135(2):1366–1371. [PubMed] [Google Scholar]
  11. De Maria R., Boirivant M., Cifone M. G., Roncaioli P., Hahne M., Tschopp J., Pallone F., Santoni A., Testi R. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest. 1996 Jan 15;97(2):316–322. doi: 10.1172/JCI118418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fisher D. E. Apoptosis in cancer therapy: crossing the threshold. Cell. 1994 Aug 26;78(4):539–542. doi: 10.1016/0092-8674(94)90518-5. [DOI] [PubMed] [Google Scholar]
  13. Fournel S., Genestier L., Robinet E., Flacher M., Revillard J. P. Human T cells require IL-2 but not G1/S transition to acquire susceptibility to Fas-mediated apoptosis. J Immunol. 1996 Nov 15;157(10):4309–4315. [PubMed] [Google Scholar]
  14. Fournel S., Genestier L., Rouault J. P., Lizard G., Flacher M., Assossou O., Revillard J. P. Apoptosis without decrease of cell DNA content. FEBS Lett. 1995 Jun 26;367(2):188–192. doi: 10.1016/0014-5793(95)00532-e. [DOI] [PubMed] [Google Scholar]
  15. Fournel S., Robinet E., Bonnefoy-Bérard N., Assossou O., Flacher M., Waldmann H., Bismuth G., Revillard J. P. A noncomitogenic CD2R monoclonal antibody induces apoptosis of activated T cells by a CD95/CD95-L-dependent pathway. J Immunol. 1998 May 1;160(9):4313–4321. [PubMed] [Google Scholar]
  16. Friesen C., Herr I., Krammer P. H., Debatin K. M. Involvement of the CD95 (APO-1/FAS) receptor/ligand system in drug-induced apoptosis in leukemia cells. Nat Med. 1996 May;2(5):574–577. doi: 10.1038/nm0596-574. [DOI] [PubMed] [Google Scholar]
  17. Genestier L., Paillot R., Bonnefoy-Berard N., Meffre G., Flacher M., Fèvre D., Liu Y. J., Le Bouteiller P., Waldmann H., Engelhard V. H. Fas-independent apoptosis of activated T cells induced by antibodies to the HLA class I alpha1 domain. Blood. 1997 Nov 1;90(9):3629–3639. [PubMed] [Google Scholar]
  18. Gorczyca W., Gong J., Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993 Apr 15;53(8):1945–1951. [PubMed] [Google Scholar]
  19. Jolivet J., Chabner B. A. Intracellular pharmacokinetics of methotrexate polyglutamates in human breast cancer cells. Selective retention and less dissociable binding of 4-NH2-10-CH3-pteroylglutamate4 and 4-NH2-10-CH3-pteroylglutamate5 to dihydrofolate reductase. J Clin Invest. 1983 Sep;72(3):773–778. doi: 10.1172/JCI111048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jolivet J., Schilsky R. L., Bailey B. D., Drake J. C., Chabner B. A. Synthesis, retention, and biological activity of methotrexate polyglutamates in cultured human breast cancer cells. J Clin Invest. 1982 Aug;70(2):351–360. doi: 10.1172/JCI110624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koopman G., Reutelingsperger C. P., Kuijten G. A., Keehnen R. M., Pals S. T., van Oers M. H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994 Sep 1;84(5):1415–1420. [PubMed] [Google Scholar]
  22. Lowe S. W., Ruley H. E., Jacks T., Housman D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993 Sep 24;74(6):957–967. doi: 10.1016/0092-8674(93)90719-7. [DOI] [PubMed] [Google Scholar]
  23. Morabito L., Montesinos M. C., Schreibman D. M., Balter L., Thompson L. F., Resta R., Carlin G., Huie M. A., Cronstein B. N. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5'-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest. 1998 Jan 15;101(2):295–300. doi: 10.1172/JCI1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Müller M., Strand S., Hug H., Heinemann E. M., Walczak H., Hofmann W. J., Stremmel W., Krammer P. H., Galle P. R. Drug-induced apoptosis in hepatoma cells is mediated by the CD95 (APO-1/Fas) receptor/ligand system and involves activation of wild-type p53. J Clin Invest. 1997 Feb 1;99(3):403–413. doi: 10.1172/JCI119174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nash R. A., Pepe M. S., Storb R., Longton G., Pettinger M., Anasetti C., Appelbaum F. R., Bowden R. A., Deeg H. J., Doney K. Acute graft-versus-host disease: analysis of risk factors after allogeneic marrow transplantation and prophylaxis with cyclosporine and methotrexate. Blood. 1992 Oct 1;80(7):1838–1845. [PubMed] [Google Scholar]
  26. Nash R. A., Piñeiro L. A., Storb R., Deeg H. J., Fitzsimmons W. E., Furlong T., Hansen J. A., Gooley T., Maher R. M., Martin P. FK506 in combination with methotrexate for the prevention of graft-versus-host disease after marrow transplantation from matched unrelated donors. Blood. 1996 Nov 1;88(9):3634–3641. [PubMed] [Google Scholar]
  27. Olsen S. L., O'Connell J. B., Bristow M. R., Renlund D. G. Methotrexate as an adjunct in the treatment of persistent mild cardiac allograft rejection. Transplantation. 1990 Nov;50(5):773–775. doi: 10.1097/00007890-199011000-00007. [DOI] [PubMed] [Google Scholar]
  28. Rieux-Laucat F., Le Deist F., Hivroz C., Roberts I. A., Debatin K. M., Fischer A., de Villartay J. P. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995 Jun 2;268(5215):1347–1349. doi: 10.1126/science.7539157. [DOI] [PubMed] [Google Scholar]
  29. Sinnett M. J., Groff G. D., Raddatz D. A., Franck W. A., Bertino J. S., Jr Methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Rheumatol. 1989 Jun;16(6):745–748. [PubMed] [Google Scholar]
  30. Sonneveld P., Schultz F. W., Nooter K., Hählen K. Pharmacokinetics of methotrexate and 7-hydroxy-methotrexate in plasma and bone marrow of children receiving low-dose oral methotrexate. Cancer Chemother Pharmacol. 1986;18(2):111–116. doi: 10.1007/BF00262278. [DOI] [PubMed] [Google Scholar]
  31. Storb R., Deeg H. J., Whitehead J., Appelbaum F., Beatty P., Bensinger W., Buckner C. D., Clift R., Doney K., Farewell V. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med. 1986 Mar 20;314(12):729–735. doi: 10.1056/NEJM198603203141201. [DOI] [PubMed] [Google Scholar]
  32. Vincent C., Fournel S., Wijdenes J., Revillard J. P. Specific hyporesponsiveness of alloreactive peripheral T cells induced by CD4 antibodies. Eur J Immunol. 1995 Mar;25(3):816–822. doi: 10.1002/eji.1830250328. [DOI] [PubMed] [Google Scholar]
  33. Wallace C. A., Bleyer W. A., Sherry D. D., Salmonson K. L., Wedgwood R. J. Toxicity and serum levels of methotrexate in children with juvenile rheumatoid arthritis. Arthritis Rheum. 1989 Jun;32(6):677–681. doi: 10.1002/anr.1780320604. [DOI] [PubMed] [Google Scholar]
  34. Weinblatt M. E., Coblyn J. S., Fox D. A., Fraser P. A., Holdsworth D. E., Glass D. N., Trentham D. E. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med. 1985 Mar 28;312(13):818–822. doi: 10.1056/NEJM198503283121303. [DOI] [PubMed] [Google Scholar]
  35. Williams H. J., Willkens R. F., Samuelson C. O., Jr, Alarcón G. S., Guttadauria M., Yarboro C., Polisson R. P., Weiner S. R., Luggen M. E., Billingsley L. M. Comparison of low-dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis. A controlled clinical trial. Arthritis Rheum. 1985 Jul;28(7):721–730. doi: 10.1002/art.1780280702. [DOI] [PubMed] [Google Scholar]
  36. Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssière J. L., Petit P. X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES