Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):379–385. doi: 10.1172/JCI3038

Substitution of the carboxyl-terminal domain of apo AI with apo AII sequences restores the potential of HDL to reduce the progression of atherosclerosis in apo E knockout mice.

P Holvoet 1, S Danloy 1, E Deridder 1, M Lox 1, H Bernar 1, A Dhoest 1, D Collen 1
PMCID: PMC508896  PMID: 9664079

Abstract

HDL metabolism and atherosclerosis were studied in apo E knockout (KO) mice overexpressing human apo AI, a des- (190-243)-apo AI carboxyl-terminal deletion mutant of human apo AI or an apo AI-(1-189)-apo AII-(12-77) chimera in which the carboxyl-terminal domain of apo AI was substituted with the pair of helices of apo AII. HDL cholesterol levels ranked: apo AI/apo E KO approximately apo AI-(1-189)-apo AII- (12-77)/apo E KO > > des-(190-243)-apo AI/apo E KO > apo E KO mice. Progression of atherosclerosis ranked: apo E KO > des-(190-243)-apo AI/apo E KO > > apo AI-(1-189)- apo AII-(12-77)/apo E KO approximately apo AI/apo E KO mice. Whereas the total capacity to induce cholesterol efflux from lipid-loaded THP-1 macrophages was higher for HDL of mice overexpressing human apo AI or the apo AI/apo AII chimera, the fractional cholesterol efflux rate, expressed in percent cholesterol efflux/microg apolipoprotein/h, for HDL of these mice was similar to that for HDL of mice overexpressing the deletion mutant and for HDL of apo E KO mice. This study demonstrates that the tertiary structure of apo AI, e.g., the number and organization of its helices, and not its amino sequence is essential for protection against atherosclerosis because it determines HDL cholesterol levels and not cholesterol efflux. Amino acid sequences of apo AII, which is considered to be less antiatherogenic, can be used to restore the structure of apo AI and thereby its antiatherogenicity.

Full Text

The Full Text of this article is available as a PDF (312.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assmann G., Brewer H. B., Jr Lipid-protein interactions in high density lipoproteins. Proc Natl Acad Sci U S A. 1974 Mar;71(3):989–993. doi: 10.1073/pnas.71.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atger V., de la Llera Moya M., Bamberger M., Francone O., Cosgrove P., Tall A., Walsh A., Moatti N., Rothblat G. Cholesterol efflux potential of sera from mice expressing human cholesteryl ester transfer protein and/or human apolipoprotein AI. J Clin Invest. 1995 Dec;96(6):2613–2622. doi: 10.1172/JCI118326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolton A. E., Hunter W. M. The use of antisera covalently coupled to agarose, cellulose and sephadex in radioimmunoassay systems for proteins and haptens. Biochim Biophys Acta. 1973 Dec 5;329(2):318–330. doi: 10.1016/0304-4165(73)90296-1. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Castro G., Nihoul L. P., Dengremont C., de Geitère C., Delfly B., Tailleux A., Fievet C., Duverger N., Denèfle P., Fruchart J. C. Cholesterol efflux, lecithin-cholesterol acyltransferase activity, and pre-beta particle formation by serum from human apolipoprotein A-I and apolipoprotein A-I/apolipoprotein A-II transgenic mice consistent with the latter being less effective for reverse cholesterol transport. Biochemistry. 1997 Feb 25;36(8):2243–2249. doi: 10.1021/bi961191e. [DOI] [PubMed] [Google Scholar]
  6. Francone O. L., Royer L., Haghpassand M. Increased prebeta-HDL levels, cholesterol efflux, and LCAT-mediated esterification in mice expressing the human cholesteryl ester transfer protein (CETP) and human apolipoprotein A-I (apoA-I) transgenes. J Lipid Res. 1996 Jun;37(6):1268–1277. [PubMed] [Google Scholar]
  7. Gong E. L., Stoltfus L. J., Brion C. M., Murugesh D., Rubin E. M. Contrasting in vivo effects of murine and human apolipoprotein A-II. Role of monomer versus dimer. J Biol Chem. 1996 Mar 15;271(11):5984–5987. doi: 10.1074/jbc.271.11.5984. [DOI] [PubMed] [Google Scholar]
  8. Gordon D. J., Rifkind B. M. High-density lipoprotein--the clinical implications of recent studies. N Engl J Med. 1989 Nov 9;321(19):1311–1316. doi: 10.1056/NEJM198911093211907. [DOI] [PubMed] [Google Scholar]
  9. Hayek T., Ito Y., Azrolan N., Verdery R. B., Aalto-Setälä K., Walsh A., Breslow J. L. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I. Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. J Clin Invest. 1993 Apr;91(4):1665–1671. doi: 10.1172/JCI116375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holvoet P., Danloy S., Collen D. Role of the carboxy-terminal domain of human apolipoprotein AI in high-density-lipoprotein metabolism--a study based on deletion and substitution variants in transgenic mice. Eur J Biochem. 1997 May 1;245(3):642–647. doi: 10.1111/j.1432-1033.1997.t01-1-00642.x. [DOI] [PubMed] [Google Scholar]
  11. Holvoet P., Perez G., Bernar H., Brouwers E., Vanloo B., Rosseneu M., Collen D. Stimulation with a monoclonal antibody (mAb4E4) of scavenger receptor-mediated uptake of chemically modified low density lipoproteins by THP-1-derived macrophages enhances foam cell generation. J Clin Invest. 1994 Jan;93(1):89–98. doi: 10.1172/JCI116988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holvoet P., Zhao Z., Deridder E., Dhoest A., Collen D. Effects of deletion of the carboxyl-terminal domain of ApoA-I or of its substitution with helices of ApoA-II on in vitro and in vivo lipoprotein association. J Biol Chem. 1996 Aug 9;271(32):19395–19401. doi: 10.1074/jbc.271.32.19395. [DOI] [PubMed] [Google Scholar]
  13. Kleinberger G., Heinzel G., Druml W., Laggner A., Lenz K. Loading and maintenance dose for the determination of amino acid kinetics in plasma. Infusionsther Klin Ernahr. 1987 Feb;14 (Suppl 1):40–44. doi: 10.1159/000226155. [DOI] [PubMed] [Google Scholar]
  14. Marzal-Casacuberta A., Blanco-Vaca F., Ishida B. Y., Julve-Gil J., Shen J., Calvet-Márquez S., González-Sastre F., Chan L. Functional lecithin:cholesterol acyltransferase deficiency and high density lipoprotein deficiency in transgenic mice overexpressing human apolipoprotein A-II. J Biol Chem. 1996 Mar 22;271(12):6720–6728. doi: 10.1074/jbc.271.12.6720. [DOI] [PubMed] [Google Scholar]
  15. Nakashima Y., Plump A. S., Raines E. W., Breslow J. L., Ross R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 1994 Jan;14(1):133–140. doi: 10.1161/01.atv.14.1.133. [DOI] [PubMed] [Google Scholar]
  16. Plump A. S., Scott C. J., Breslow J. L. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9607–9611. doi: 10.1073/pnas.91.20.9607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Plump A. S., Smith J. D., Hayek T., Aalto-Setälä K., Walsh A., Verstuyft J. G., Rubin E. M., Breslow J. L. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 1992 Oct 16;71(2):343–353. doi: 10.1016/0092-8674(92)90362-g. [DOI] [PubMed] [Google Scholar]
  18. Pászty C., Maeda N., Verstuyft J., Rubin E. M. Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice. J Clin Invest. 1994 Aug;94(2):899–903. doi: 10.1172/JCI117412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reddick R. L., Zhang S. H., Maeda N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler Thromb. 1994 Jan;14(1):141–147. doi: 10.1161/01.atv.14.1.141. [DOI] [PubMed] [Google Scholar]
  20. Rubin E. M., Ishida B. Y., Clift S. M., Krauss R. M. Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):434–438. doi: 10.1073/pnas.88.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rubin E. M., Krauss R. M., Spangler E. A., Verstuyft J. G., Clift S. M. Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI. Nature. 1991 Sep 19;353(6341):265–267. doi: 10.1038/353265a0. [DOI] [PubMed] [Google Scholar]
  22. Schaefer E. J., Heaton W. H., Wetzel M. G., Brewer H. B., Jr Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis. 1982 Jan-Feb;2(1):16–26. doi: 10.1161/01.atv.2.1.16. [DOI] [PubMed] [Google Scholar]
  23. Schultz J. R., Gong E. L., McCall M. R., Nichols A. V., Clift S. M., Rubin E. M. Expression of human apolipoprotein A-II and its effect on high density lipoproteins in transgenic mice. J Biol Chem. 1992 Oct 25;267(30):21630–21636. [PubMed] [Google Scholar]
  24. Schultz J. R., Verstuyft J. G., Gong E. L., Nichols A. V., Rubin E. M. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature. 1993 Oct 21;365(6448):762–764. doi: 10.1038/365762a0. [DOI] [PubMed] [Google Scholar]
  25. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980 Aug;26(2):171–176. doi: 10.1002/ijc.2910260208. [DOI] [PubMed] [Google Scholar]
  26. Walsh A., Ito Y., Breslow J. L. High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem. 1989 Apr 15;264(11):6488–6494. [PubMed] [Google Scholar]
  27. Warden C. H., Hedrick C. C., Qiao J. H., Castellani L. W., Lusis A. J. Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science. 1993 Jul 23;261(5120):469–472. doi: 10.1126/science.8332912. [DOI] [PubMed] [Google Scholar]
  28. Zhang S. H., Reddick R. L., Piedrahita J. A., Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 1992 Oct 16;258(5081):468–471. doi: 10.1126/science.1411543. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES