Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):395–401. doi: 10.1172/JCI1656

Autoantibodies against CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) that impair glucose-induced insulin secretion in noninsulin- dependent diabetes patients.

F Ikehata 1, J Satoh 1, K Nata 1, A Tohgo 1, T Nakazawa 1, I Kato 1, S Kobayashi 1, T Akiyama 1, S Takasawa 1, T Toyota 1, H Okamoto 1
PMCID: PMC508898  PMID: 9664081

Abstract

Cyclic ADP-ribose (cADPR) has been shown to be a mediator for intracellular Ca2+ mobilization for insulin secretion by glucose in pancreatic beta cells, and CD38 shows both ADP-ribosyl cyclase to synthesize cADPR from NAD+ and cADPR hydrolase to hydrolyze cADPR to ADP-ribose. We show here that 13.8% of Japanese non-insulin-dependent diabetes (NIDDM) patients examined have autoantibodies against CD38 and that the sera containing anti-CD38 autoantibodies inhibit the ADP-ribosyl cyclase activity of CD38 (P </= 0.05). Insulin secretion from pancreatic islets by glucose is significantly inhibited by the addition of the NIDDM sera with anti-CD38 antibodies (P </= 0.04-0.0001), and the inhibition of insulin secretion is abolished by the addition of recombinant CD38 (P </= 0.02). The increase of cADPR levels in pancreatic islets by glucose was also inhibited by the addition of the sera (P </= 0.05). These results strongly suggest that the presence of anti-CD38 autoantibodies in NIDDM patients can be one of the major causes of impaired glucose-induced insulin secretion in NIDDM.

Full Text

The Full Text of this article is available as a PDF (285.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballinger S. W., Shoffner J. M., Hedaya E. V., Trounce I., Polak M. A., Koontz D. A., Wallace D. C. Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat Genet. 1992 Apr;1(1):11–15. doi: 10.1038/ng0492-11. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. DeFronzo R. A., Bonadonna R. C., Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 1992 Mar;15(3):318–368. doi: 10.2337/diacare.15.3.318. [DOI] [PubMed] [Google Scholar]
  4. Ebihara S., Sasaki T., Hida W., Kikuchi Y., Oshiro T., Shimura S., Takasawa S., Okamoto H., Nishiyama A., Akaike N. Role of cyclic ADP-ribose in ATP-activated potassium currents in alveolar macrophages. J Biol Chem. 1997 Jun 20;272(25):16023–16029. doi: 10.1074/jbc.272.25.16023. [DOI] [PubMed] [Google Scholar]
  5. Froguel P., Zouali H., Vionnet N., Velho G., Vaxillaire M., Sun F., Lesage S., Stoffel M., Takeda J., Passa P. Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med. 1993 Mar 11;328(10):697–702. doi: 10.1056/NEJM199303113281005. [DOI] [PubMed] [Google Scholar]
  6. Hattersley A. T., Turner R. C., Permutt M. A., Patel P., Tanizawa Y., Chiu K. C., O'Rahilly S., Watkins P. J., Wainscoat J. S. Linkage of type 2 diabetes to the glucokinase gene. Lancet. 1992 May 30;339(8805):1307–1310. doi: 10.1016/0140-6736(92)91958-b. [DOI] [PubMed] [Google Scholar]
  7. Islam M. S., Larsson O., Berggren P. O. Cyclic ADP-ribose in beta cells. Science. 1993 Oct 22;262(5133):584–586. doi: 10.1126/science.8211188. [DOI] [PubMed] [Google Scholar]
  8. Kato I., Takasawa S., Akabane A., Tanaka O., Abe H., Takamura T., Suzuki Y., Nata K., Yonekura H., Yoshimoto T. Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38-expressing transgenic mice. J Biol Chem. 1995 Dec 15;270(50):30045–30050. doi: 10.1074/jbc.270.50.30045. [DOI] [PubMed] [Google Scholar]
  9. Koguma T., Takasawa S., Tohgo A., Karasawa T., Furuya Y., Yonekura H., Okamoto H. Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochim Biophys Acta. 1994 Aug 11;1223(1):160–162. doi: 10.1016/0167-4889(94)90087-6. [DOI] [PubMed] [Google Scholar]
  10. Matsuoka T., Kajimoto Y., Watada H., Umayahara Y., Kubota M., Kawamori R., Yamasaki Y., Kamada T. Expression of CD38 gene, but not of mitochondrial glycerol-3-phosphate dehydrogenase gene, is impaired in pancreatic islets of GK rats. Biochem Biophys Res Commun. 1995 Sep 5;214(1):239–246. doi: 10.1006/bbrc.1995.2280. [DOI] [PubMed] [Google Scholar]
  11. Nata K., Takamura T., Karasawa T., Kumagai T., Hashioka W., Tohgo A., Yonekura H., Takasawa S., Nakamura S., Okamoto H. Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene. 1997 Feb 28;186(2):285–292. doi: 10.1016/s0378-1119(96)00723-8. [DOI] [PubMed] [Google Scholar]
  12. Noguchi N., Takasawa S., Nata K., Tohgo A., Kato I., Ikehata F., Yonekura H., Okamoto H. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem. 1997 Feb 7;272(6):3133–3136. doi: 10.1074/jbc.272.6.3133. [DOI] [PubMed] [Google Scholar]
  13. Okamoto H., Takasawa S., Nata K. The CD38-cyclic ADP-ribose signalling system in insulin secretion: molecular basis and clinical implications. Diabetologia. 1997 Dec;40(12):1485–1491. doi: 10.1007/s001250050854. [DOI] [PubMed] [Google Scholar]
  14. Okamoto H., Takasawa S., Tohgo A., Nata K., Kato I., Noguchi N. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38: inhibition of hydrolysis by ATP and physiological significance. Methods Enzymol. 1997;280:306–318. doi: 10.1016/s0076-6879(97)80122-x. [DOI] [PubMed] [Google Scholar]
  15. Okamoto H., Takasawa S., Tohgo A. New aspects of the physiological significance of NAD, poly ADP-ribose and cyclic ADP-ribose. Biochimie. 1995;77(5):356–363. doi: 10.1016/0300-9084(96)88146-6. [DOI] [PubMed] [Google Scholar]
  16. Ravazzola M., Halban P. A., Orci L. Inositol 1,4,5-trisphosphate receptor subtype 3 in pancreatic islet cell secretory granules revisited. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2745–2748. doi: 10.1073/pnas.93.7.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rojas E., Carroll P. B., Ricordi C., Boschero A. C., Stojilkovic S. S., Atwater I. Control of cytosolic free calcium in cultured human pancreatic beta-cells occurs by external calcium-dependent and independent mechanisms. Endocrinology. 1994 Apr;134(4):1771–1781. doi: 10.1210/endo.134.4.8137742. [DOI] [PubMed] [Google Scholar]
  18. Rutter G. A., Theler J. M., Li G., Wollheim C. B. Ca2+ stores in insulin-secreting cells: lack of effect of cADP ribose. Cell Calcium. 1994 Aug;16(2):71–80. doi: 10.1016/0143-4160(94)90002-7. [DOI] [PubMed] [Google Scholar]
  19. Steiner D. F., Tager H. S., Chan S. J., Nanjo K., Sanke T., Rubenstein A. H. Lessons learned from molecular biology of insulin-gene mutations. Diabetes Care. 1990 Jun;13(6):600–609. doi: 10.2337/diacare.13.6.600. [DOI] [PubMed] [Google Scholar]
  20. Takahashi K., Kukimoto I., Tokita K., Inageda K., Inoue S., Kontani K., Hoshino S., Nishina H., Kanaho Y., Katada T. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett. 1995 Sep 4;371(2):204–208. doi: 10.1016/0014-5793(95)00914-u. [DOI] [PubMed] [Google Scholar]
  21. Takasawa S., Akiyama T., Nata K., Kuroki M., Tohgo A., Noguchi N., Kobayashi S., Kato I., Katada T., Okamoto H. Cyclic ADP-ribose and inositol 1,4,5-trisphosphate as alternate second messengers for intracellular Ca2+ mobilization in normal and diabetic beta-cells. J Biol Chem. 1998 Jan 30;273(5):2497–2500. doi: 10.1074/jbc.273.5.2497. [DOI] [PubMed] [Google Scholar]
  22. Takasawa S., Ishida A., Nata K., Nakagawa K., Noguchi N., Tohgo A., Kato I., Yonekura H., Fujisawa H., Okamoto H. Requirement of calmodulin-dependent protein kinase II in cyclic ADP-ribose-mediated intracellular Ca2+ mobilization. J Biol Chem. 1995 Dec 22;270(51):30257–30259. doi: 10.1074/jbc.270.51.30257. [DOI] [PubMed] [Google Scholar]
  23. Takasawa S., Nata K., Yonekura H., Okamoto H. Cyclic ADP-ribose in insulin secretion from pancreatic beta cells. Science. 1993 Jan 15;259(5093):370–373. doi: 10.1126/science.8420005. [DOI] [PubMed] [Google Scholar]
  24. Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
  25. Taylor S. I., Cama A., Accili D., Barbetti F., Quon M. J., de la Luz Sierra M., Suzuki Y., Koller E., Levy-Toledano R., Wertheimer E. Mutations in the insulin receptor gene. Endocr Rev. 1992 Aug;13(3):566–595. doi: 10.1210/edrv-13-3-566. [DOI] [PubMed] [Google Scholar]
  26. Tohgo A., Munakata H., Takasawa S., Nata K., Akiyama T., Hayashi N., Okamoto H. Lysine 129 of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) participates in the binding of ATP to inhibit the cyclic ADP-ribose hydrolase. J Biol Chem. 1997 Feb 14;272(7):3879–3882. doi: 10.1074/jbc.272.7.3879. [DOI] [PubMed] [Google Scholar]
  27. Webb D. L., Islam M. S., Efanov A. M., Brown G., Köhler M., Larsson O., Berggren P. O. Insulin exocytosis and glucose-mediated increase in cytoplasmic free Ca2+ concentration in the pancreatic beta-cell are independent of cyclic ADP-ribose. J Biol Chem. 1996 Aug 9;271(32):19074–19079. doi: 10.1074/jbc.271.32.19074. [DOI] [PubMed] [Google Scholar]
  28. Yamagata K., Furuta H., Oda N., Kaisaki P. J., Menzel S., Cox N. J., Fajans S. S., Signorini S., Stoffel M., Bell G. I. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1) Nature. 1996 Dec 5;384(6608):458–460. doi: 10.1038/384458a0. [DOI] [PubMed] [Google Scholar]
  29. Yamagata K., Oda N., Kaisaki P. J., Menzel S., Furuta H., Vaxillaire M., Southam L., Cox R. D., Lathrop G. M., Boriraj V. V. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3) Nature. 1996 Dec 5;384(6608):455–458. doi: 10.1038/384455a0. [DOI] [PubMed] [Google Scholar]
  30. van den Ouweland J. M., Lemkes H. H., Ruitenbeek W., Sandkuijl L. A., de Vijlder M. F., Struyvenberg P. A., van de Kamp J. J., Maassen J. A. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992 Aug;1(5):368–371. doi: 10.1038/ng0892-368. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES