Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):430–437. doi: 10.1172/JCI3008

Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display.

D Rajotte 1, W Arap 1, M Hagedorn 1, E Koivunen 1, R Pasqualini 1, E Ruoslahti 1
PMCID: PMC508902  PMID: 9664085

Abstract

Vascular beds are known to differ in structure and metabolic function, but less is known about their molecular diversity. We have studied organ-specific molecular differences of the endothelium in various tissues by using in vivo screening of peptide libraries expressed on the surface of a bacteriophage. We report here that targeting of a large number of tissues with this method yielded, in each case, phage that homed selectively to the targeted organ. Different peptide motifs were recovered from each of these tissues. The enrichment in homing to the target organs relative to an unselected phage was 3-35-fold. Peptide sequences that conferred selective phage homing to the vasculature of lung, skin, and pancreas were characterized in detail. Immunohistochemistry showed that the phage localized in the blood vessels of their target organ. When tested, the phage homing was blocked in the presence of the cognate peptide. By targeting several tissues and by showing that specific homing could be achieved in each case, we provide evidence that organ- and tissue-specific molecular heterogeneity of the vasculature is a general, perhaps even universal, phenomenon. Our results also show that these molecular differences can serve as molecular addresses.

Full Text

The Full Text of this article is available as a PDF (708.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aird W. C., Edelberg J. M., Weiler-Guettler H., Simmons W. W., Smith T. W., Rosenberg R. D. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol. 1997 Sep 8;138(5):1117–1124. doi: 10.1083/jcb.138.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arap W., Pasqualini R., Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998 Jan 16;279(5349):377–380. doi: 10.1126/science.279.5349.377. [DOI] [PubMed] [Google Scholar]
  3. Auerbach R., Lu W. C., Pardon E., Gumkowski F., Kaminska G., Kaminski M. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer Res. 1987 Mar 15;47(6):1492–1496. [PubMed] [Google Scholar]
  4. Augustin H. G., Kozian D. H., Johnson R. C. Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays. 1994 Dec;16(12):901–906. doi: 10.1002/bies.950161208. [DOI] [PubMed] [Google Scholar]
  5. Barry M. A., Dower W. J., Johnston S. A. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries. Nat Med. 1996 Mar;2(3):299–305. doi: 10.1038/nm0396-299. [DOI] [PubMed] [Google Scholar]
  6. Belloni P. N., Nicolson G. L. Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures. J Cell Physiol. 1988 Sep;136(3):398–410. doi: 10.1002/jcp.1041360303. [DOI] [PubMed] [Google Scholar]
  7. Belloni P. N., Tressler R. J. Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metastasis Rev. 1990 Feb;8(4):353–389. doi: 10.1007/BF00052608. [DOI] [PubMed] [Google Scholar]
  8. Burritt J. B., Bond C. W., Doss K. W., Jesaitis A. J. Filamentous phage display of oligopeptide libraries. Anal Biochem. 1996 Jun 15;238(1):1–13. doi: 10.1006/abio.1996.0241. [DOI] [PubMed] [Google Scholar]
  9. Børsum T., Hagen I., Henriksen T., Carlander B. Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture. Atherosclerosis. 1982 Sep;44(3):367–378. doi: 10.1016/0021-9150(82)90011-9. [DOI] [PubMed] [Google Scholar]
  10. Cwirla S. E., Peters E. A., Barrett R. W., Dower W. J. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6378–6382. doi: 10.1073/pnas.87.16.6378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fajardo L. F. The complexity of endothelial cells. A review. Am J Clin Pathol. 1989 Aug;92(2):241–250. doi: 10.1093/ajcp/92.2.241. [DOI] [PubMed] [Google Scholar]
  12. Geier M. R., Trigg M. E., Merril C. R. Fate of bacteriophage lambda in non-immune germ-free mice. Nature. 1973 Nov 23;246(5430):221–223. doi: 10.1038/246221a0. [DOI] [PubMed] [Google Scholar]
  13. Ghitescu L. D., Crine P., Jacobson B. S. Antibodies specific to the plasma membrane of rat lung microvascular endothelium. Exp Cell Res. 1997 Apr 10;232(1):47–55. doi: 10.1006/excr.1997.3490. [DOI] [PubMed] [Google Scholar]
  14. Gimbrone M. A., Jr, Cybulsky M. I., Kume N., Collins T., Resnick N. Vascular endothelium. An integrator of pathophysiological stimuli in atherogenesis. Ann N Y Acad Sci. 1995 Jan 17;748:122–132. [PubMed] [Google Scholar]
  15. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/s0092-8674(00)80108-7. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. C., Augustin-Voss H. G., Zhu D. Z., Pauli B. U. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer Res. 1991 Jan 1;51(1):394–399. [PubMed] [Google Scholar]
  17. Johnson R. C., Zhu D., Augustin-Voss H. G., Pauli B. U. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. J Cell Biol. 1993 Jun;121(6):1423–1432. doi: 10.1083/jcb.121.6.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koivunen E., Wang B., Dickinson C. D., Ruoslahti E. Peptides in cell adhesion research. Methods Enzymol. 1994;245:346–369. doi: 10.1016/0076-6879(94)45019-6. [DOI] [PubMed] [Google Scholar]
  19. Lasky L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992 Nov 6;258(5084):964–969. doi: 10.1126/science.1439808. [DOI] [PubMed] [Google Scholar]
  20. Malik P., Perham R. N. Simultaneous display of different peptides on the surface of filamentous bacteriophage. Nucleic Acids Res. 1997 Feb 15;25(4):915–916. doi: 10.1093/nar/25.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pardanaud L., Yassine F., Dieterlen-Lievre F. Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development. 1989 Mar;105(3):473–485. doi: 10.1242/dev.105.3.473. [DOI] [PubMed] [Google Scholar]
  22. Pasqualini R., Koivunen E., Ruoslahti E. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol. 1995 Sep;130(5):1189–1196. doi: 10.1083/jcb.130.5.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pasqualini R., Koivunen E., Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol. 1997 Jun;15(6):542–546. doi: 10.1038/nbt0697-542. [DOI] [PubMed] [Google Scholar]
  24. Pasqualini R., Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996 Mar 28;380(6572):364–366. doi: 10.1038/380364a0. [DOI] [PubMed] [Google Scholar]
  25. Peletskaya E. N., Glinsky V. V., Glinsky G. V., Deutscher S. L., Quinn T. P. Characterization of peptides that bind the tumor-associated Thomsen-Friedenreich antigen selected from bacteriophage display libraries. J Mol Biol. 1997 Jul 18;270(3):374–384. doi: 10.1006/jmbi.1997.1107. [DOI] [PubMed] [Google Scholar]
  26. Ponder B. A., Wilkinson M. M. Organ-related differences in binding of Dolichos biflorus agglutinin to vascular endothelium. Dev Biol. 1983 Apr;96(2):535–541. doi: 10.1016/0012-1606(83)90191-4. [DOI] [PubMed] [Google Scholar]
  27. Risau W. Differentiation of endothelium. FASEB J. 1995 Jul;9(10):926–933. [PubMed] [Google Scholar]
  28. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697–715. doi: 10.1146/annurev.cellbio.12.1.697. [DOI] [PubMed] [Google Scholar]
  29. Salmi M., Jalkanen S. How do lymphocytes know where to go: current concepts and enigmas of lymphocyte homing. Adv Immunol. 1997;64:139–218. doi: 10.1016/s0065-2776(08)60889-5. [DOI] [PubMed] [Google Scholar]
  30. Smith G. P., Scott J. K. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 1993;217:228–257. doi: 10.1016/0076-6879(93)17065-d. [DOI] [PubMed] [Google Scholar]
  31. Streeter P. R., Berg E. L., Rouse B. T., Bargatze R. F., Butcher E. C. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature. 1988 Jan 7;331(6151):41–46. doi: 10.1038/331041a0. [DOI] [PubMed] [Google Scholar]
  32. Wrighton N. C., Farrell F. X., Chang R., Kashyap A. K., Barbone F. P., Mulcahy L. S., Johnson D. L., Barrett R. W., Jolliffe L. K., Dower W. J. Small peptides as potent mimetics of the protein hormone erythropoietin. Science. 1996 Jul 26;273(5274):458–464. doi: 10.1126/science.273.5274.458. [DOI] [PubMed] [Google Scholar]
  33. de Bono D. P., Green C. The adhesion of different cell types to cultured vascular endothelium: effects of culture density and age. Br J Exp Pathol. 1984 Feb;65(1):145–154. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES