Abstract
Cytotoxic T lymphocytes (CTL) are potent effector cells that could provide long term antitumor immunity if induced by appropriate vaccines. CTL recognize 8-14 amino acid-long peptides processed intracellularly and presented by MHC class I molecules. A well-characterized example of a potential tumor antigen in childhood pre-B Acute Lymphoblastic Leukemia (ALL) results from the chromosomal translocation 12;21 leading to the fusion of the ETV6 and AML1 genes. This translocation is observed in > 25% of ALL-patients. In this study, we have examined whether the chimeric ETV6-AML1 protein could serve as a tumor specific antigen for CTL in HLA-A2.1 individuals. We have identified a nonapeptide (RIAECILGM), encoded by the fusion region of the ETV6-AML1 protein, that binds to HLA-A2.1 molecules and induces specific primary CTL in peripheral blood lymphocytes from healthy donors. These CTL specifically lysed HLA-A2.1 tumor cells endogeneously expressing the ETV6-AML fusion protein. CTL with similar functional capacities were found with high frequencies and cloned from one patient's bone marrow indicating that ETV6-AML1-specific anti-ALL CTL are, at least in some patients, spontaneously stimulated and might participate to host antileukemia defense.
Full Text
The Full Text of this article is available as a PDF (288.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agape P., Gerard B., Cave H., Devaux I., Vilmer E., Lecomte M. C., Grandchamp B. Analysis of ETV6 and ETV6-AML1 proteins in acute lymphoblastic leukaemia. Br J Haematol. 1997 Jul;98(1):234–239. doi: 10.1046/j.1365-2141.1997.1973014.x. [DOI] [PubMed] [Google Scholar]
- Anderson P., Nagler-Anderson C., O'Brien C., Levine H., Watkins S., Slayter H. S., Blue M. L., Schlossman S. F. A monoclonal antibody reactive with a 15-kDa cytoplasmic granule-associated protein defines a subpopulation of CD8+ T lymphocytes. J Immunol. 1990 Jan 15;144(2):574–582. [PubMed] [Google Scholar]
- Andersson K. B., Deggerdal A., Skjønsberg C., Smeland E. B., Blomhoff H. K. Constitutive expression of c-myc does not relieve cAMP-mediated growth arrest in human lymphoid Reh cells. J Cell Physiol. 1993 Oct;157(1):61–69. doi: 10.1002/jcp.1041570108. [DOI] [PubMed] [Google Scholar]
- Bertoletti A., Chisari F. V., Penna A., Guilhot S., Galati L., Missale G., Fowler P., Schlicht H. J., Vitiello A., Chesnut R. C. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J Virol. 1993 Apr;67(4):2376–2380. doi: 10.1128/jvi.67.4.2376-2380.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boël P., Wildmann C., Sensi M. L., Brasseur R., Renauld J. C., Coulie P., Boon T., van der Bruggen P. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 1995 Feb;2(2):167–175. doi: 10.1016/s1074-7613(95)80053-0. [DOI] [PubMed] [Google Scholar]
- Cayuela J. M., Baruchel A., Orange C., Madani A., Auclerc M. F., Daniel M. T., Schaison G., Sigaux F. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 1996 Jul 1;88(1):302–308. [PubMed] [Google Scholar]
- Celis E., Tsai V., Crimi C., DeMars R., Wentworth P. A., Chesnut R. W., Grey H. M., Sette A., Serra H. M. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2105–2109. doi: 10.1073/pnas.91.6.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connan F., Hlavac F., Hoebeke J., Guillet J. G., Choppin J. A simple assay for detection of peptides promoting the assembly of HLA class I molecules. Eur J Immunol. 1994 Mar;24(3):777–780. doi: 10.1002/eji.1830240344. [DOI] [PubMed] [Google Scholar]
- Dethlefs S., Escriou N., Brahic M., van der Werf S., Larsson-Sciard E. L. Theiler's virus and Mengo virus induce cross-reactive cytotoxic T lymphocytes restricted to the same immunodominant VP2 epitope in C57BL/6 mice. J Virol. 1997 Jul;71(7):5361–5365. doi: 10.1128/jvi.71.7.5361-5365.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
- Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golub T. R., Barker G. F., Lovett M., Gilliland D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994 Apr 22;77(2):307–316. doi: 10.1016/0092-8674(94)90322-0. [DOI] [PubMed] [Google Scholar]
- Harada M., Matsunaga K., Oguchi Y., Iijima H., Ito O., Tamada K., Kimura G., Nomoto K. The involvement of transforming growth factor beta in the impaired antitumor T-cell response at the gut-associated lymphoid tissue (GALT). Cancer Res. 1995 Dec 15;55(24):6146–6151. [PubMed] [Google Scholar]
- Kawakami Y., Eliyahu S., Sakaguchi K., Robbins P. F., Rivoltini L., Yannelli J. R., Appella E., Rosenberg S. A. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994 Jul 1;180(1):347–352. doi: 10.1084/jem.180.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quesnel A., Hsu S. C., Delmas A., Steward M. W., Trudelle Y., Abastado J. P. Efficient binding to the MHC class I K(d) molecule of synthetic peptides in which the anchoring position 2 does not fit the consensus motif. FEBS Lett. 1996 May 27;387(1):42–46. doi: 10.1016/0014-5793(96)00446-2. [DOI] [PubMed] [Google Scholar]
- Raynaud S., Cave H., Baens M., Bastard C., Cacheux V., Grosgeorge J., Guidal-Giroux C., Guo C., Vilmer E., Marynen P. The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood. 1996 Apr 1;87(7):2891–2899. [PubMed] [Google Scholar]
- Romana S. P., Poirel H., Leconiat M., Flexor M. A., Mauchauffé M., Jonveaux P., Macintyre E. A., Berger R., Bernard O. A. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995 Dec 1;86(11):4263–4269. [PubMed] [Google Scholar]
- Rosenberg S. A., Lotze M. T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709. doi: 10.1146/annurev.iy.04.040186.003341. [DOI] [PubMed] [Google Scholar]
- Shurtleff S. A., Buijs A., Behm F. G., Rubnitz J. E., Raimondi S. C., Hancock M. L., Chan G. C., Pui C. H., Grosveld G., Downing J. R. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 1995 Dec;9(12):1985–1989. [PubMed] [Google Scholar]
- Tsomides T. J., Walker B. D., Eisen H. N. An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11276–11280. doi: 10.1073/pnas.88.24.11276. [DOI] [PMC free article] [PubMed] [Google Scholar]