Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1998 Jul 15;102(2):455–462. doi: 10.1172/JCI3126

Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia.

P Yotnda 1, F Garcia 1, M Peuchmaur 1, B Grandchamp 1, M Duval 1, F Lemonnier 1, E Vilmer 1, P Langlade-Demoyen 1
PMCID: PMC508905  PMID: 9664088

Abstract

Cytotoxic T lymphocytes (CTL) are potent effector cells that could provide long term antitumor immunity if induced by appropriate vaccines. CTL recognize 8-14 amino acid-long peptides processed intracellularly and presented by MHC class I molecules. A well-characterized example of a potential tumor antigen in childhood pre-B Acute Lymphoblastic Leukemia (ALL) results from the chromosomal translocation 12;21 leading to the fusion of the ETV6 and AML1 genes. This translocation is observed in > 25% of ALL-patients. In this study, we have examined whether the chimeric ETV6-AML1 protein could serve as a tumor specific antigen for CTL in HLA-A2.1 individuals. We have identified a nonapeptide (RIAECILGM), encoded by the fusion region of the ETV6-AML1 protein, that binds to HLA-A2.1 molecules and induces specific primary CTL in peripheral blood lymphocytes from healthy donors. These CTL specifically lysed HLA-A2.1 tumor cells endogeneously expressing the ETV6-AML fusion protein. CTL with similar functional capacities were found with high frequencies and cloned from one patient's bone marrow indicating that ETV6-AML1-specific anti-ALL CTL are, at least in some patients, spontaneously stimulated and might participate to host antileukemia defense.

Full Text

The Full Text of this article is available as a PDF (288.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agape P., Gerard B., Cave H., Devaux I., Vilmer E., Lecomte M. C., Grandchamp B. Analysis of ETV6 and ETV6-AML1 proteins in acute lymphoblastic leukaemia. Br J Haematol. 1997 Jul;98(1):234–239. doi: 10.1046/j.1365-2141.1997.1973014.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson P., Nagler-Anderson C., O'Brien C., Levine H., Watkins S., Slayter H. S., Blue M. L., Schlossman S. F. A monoclonal antibody reactive with a 15-kDa cytoplasmic granule-associated protein defines a subpopulation of CD8+ T lymphocytes. J Immunol. 1990 Jan 15;144(2):574–582. [PubMed] [Google Scholar]
  3. Andersson K. B., Deggerdal A., Skjønsberg C., Smeland E. B., Blomhoff H. K. Constitutive expression of c-myc does not relieve cAMP-mediated growth arrest in human lymphoid Reh cells. J Cell Physiol. 1993 Oct;157(1):61–69. doi: 10.1002/jcp.1041570108. [DOI] [PubMed] [Google Scholar]
  4. Bertoletti A., Chisari F. V., Penna A., Guilhot S., Galati L., Missale G., Fowler P., Schlicht H. J., Vitiello A., Chesnut R. C. Definition of a minimal optimal cytotoxic T-cell epitope within the hepatitis B virus nucleocapsid protein. J Virol. 1993 Apr;67(4):2376–2380. doi: 10.1128/jvi.67.4.2376-2380.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boël P., Wildmann C., Sensi M. L., Brasseur R., Renauld J. C., Coulie P., Boon T., van der Bruggen P. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 1995 Feb;2(2):167–175. doi: 10.1016/s1074-7613(95)80053-0. [DOI] [PubMed] [Google Scholar]
  6. Cayuela J. M., Baruchel A., Orange C., Madani A., Auclerc M. F., Daniel M. T., Schaison G., Sigaux F. TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 1996 Jul 1;88(1):302–308. [PubMed] [Google Scholar]
  7. Celis E., Tsai V., Crimi C., DeMars R., Wentworth P. A., Chesnut R. W., Grey H. M., Sette A., Serra H. M. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2105–2109. doi: 10.1073/pnas.91.6.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Connan F., Hlavac F., Hoebeke J., Guillet J. G., Choppin J. A simple assay for detection of peptides promoting the assembly of HLA class I molecules. Eur J Immunol. 1994 Mar;24(3):777–780. doi: 10.1002/eji.1830240344. [DOI] [PubMed] [Google Scholar]
  9. Dethlefs S., Escriou N., Brahic M., van der Werf S., Larsson-Sciard E. L. Theiler's virus and Mengo virus induce cross-reactive cytotoxic T lymphocytes restricted to the same immunodominant VP2 epitope in C57BL/6 mice. J Virol. 1997 Jul;71(7):5361–5365. doi: 10.1128/jvi.71.7.5361-5365.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  11. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Golub T. R., Barker G. F., Lovett M., Gilliland D. G. Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994 Apr 22;77(2):307–316. doi: 10.1016/0092-8674(94)90322-0. [DOI] [PubMed] [Google Scholar]
  13. Harada M., Matsunaga K., Oguchi Y., Iijima H., Ito O., Tamada K., Kimura G., Nomoto K. The involvement of transforming growth factor beta in the impaired antitumor T-cell response at the gut-associated lymphoid tissue (GALT). Cancer Res. 1995 Dec 15;55(24):6146–6151. [PubMed] [Google Scholar]
  14. Kawakami Y., Eliyahu S., Sakaguchi K., Robbins P. F., Rivoltini L., Yannelli J. R., Appella E., Rosenberg S. A. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994 Jul 1;180(1):347–352. doi: 10.1084/jem.180.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Quesnel A., Hsu S. C., Delmas A., Steward M. W., Trudelle Y., Abastado J. P. Efficient binding to the MHC class I K(d) molecule of synthetic peptides in which the anchoring position 2 does not fit the consensus motif. FEBS Lett. 1996 May 27;387(1):42–46. doi: 10.1016/0014-5793(96)00446-2. [DOI] [PubMed] [Google Scholar]
  16. Raynaud S., Cave H., Baens M., Bastard C., Cacheux V., Grosgeorge J., Guidal-Giroux C., Guo C., Vilmer E., Marynen P. The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood. 1996 Apr 1;87(7):2891–2899. [PubMed] [Google Scholar]
  17. Romana S. P., Poirel H., Leconiat M., Flexor M. A., Mauchauffé M., Jonveaux P., Macintyre E. A., Berger R., Bernard O. A. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995 Dec 1;86(11):4263–4269. [PubMed] [Google Scholar]
  18. Rosenberg S. A., Lotze M. T. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681–709. doi: 10.1146/annurev.iy.04.040186.003341. [DOI] [PubMed] [Google Scholar]
  19. Shurtleff S. A., Buijs A., Behm F. G., Rubnitz J. E., Raimondi S. C., Hancock M. L., Chan G. C., Pui C. H., Grosveld G., Downing J. R. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 1995 Dec;9(12):1985–1989. [PubMed] [Google Scholar]
  20. Tsomides T. J., Walker B. D., Eisen H. N. An optimal viral peptide recognized by CD8+ T cells binds very tightly to the restricting class I major histocompatibility complex protein on intact cells but not to the purified class I protein. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11276–11280. doi: 10.1073/pnas.88.24.11276. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES