Abstract
The role of mutations of the granulocyte colony-stimulating factor receptor (G-CSFR) in the pathogenesis of severe congenital neutropenia (SCN) and the subsequent development of acute myeloid leukemia (AML) is controversial. Mice carrying a targeted mutation of their G-CSFR that reproduces the mutation found in a patient with SCN and AML have been generated. The mutant G-CSFR allele is expressed in a myeloid-specific fashion at levels comparable to the wild-type allele. Mice heterozygous or homozygous for this mutation have normal levels of circulating neutrophils and no evidence for a block in myeloid maturation, indicating that resting granulopoiesis is normal. However, in response to G-CSF treatment, these mice demonstrate a significantly greater fold increase in the level of circulating neutrophils. This effect appears to be due to increased neutrophil production as the absolute number of G-CSF-responsive progenitors in the bone marrow and their proliferation in response to G-CSF is increased. Furthermore, the in vitro survival and G-CSF-dependent suppression of apoptosis of mutant neutrophils are normal. Despite this evidence for a hyperproliferative response to G-CSF, no cases of AML have been detected to date. These data demonstrate that the G-CSFR mutation found in patients with SCN is not sufficient to induce an SCN phenotype or AML in mice.
Full Text
The Full Text of this article is available as a PDF (373.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avalos B. R. Molecular analysis of the granulocyte colony-stimulating factor receptor. Blood. 1996 Aug 1;88(3):761–777. [PubMed] [Google Scholar]
- Barettino D., Feigenbutz M., Valcárcel R., Stunnenberg H. G. Improved method for PCR-mediated site-directed mutagenesis. Nucleic Acids Res. 1994 Feb 11;22(3):541–542. doi: 10.1093/nar/22.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernard T., Gale R. E., Linch D. C. Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. Br J Haematol. 1996 Jun;93(3):527–533. doi: 10.1046/j.1365-2141.1996.d01-1696.x. [DOI] [PubMed] [Google Scholar]
- Bernhardt T. M., Burchardt E. R., Welte K. Assessment of G-CSF and GM-CSF mRNA expression in peripheral blood mononuclear cells from patients with severe congenital neutropenia and in human myeloid leukemic cell lines. Exp Hematol. 1993 Jan;21(1):163–168. [PubMed] [Google Scholar]
- Bonilla M. A., Dale D., Zeidler C., Last L., Reiter A., Ruggeiro M., Davis M., Koci B., Hammond W., Gillio A. Long-term safety of treatment with recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF) in patients with severe congenital neutropenias. Br J Haematol. 1994 Dec;88(4):723–730. doi: 10.1111/j.1365-2141.1994.tb05110.x. [DOI] [PubMed] [Google Scholar]
- Carapeti M., Soede-Bobok A., Hochhaus A., Sill H., Touw I. P., Goldman J. M., Cross N. C. Rarity of dominant-negative mutations of the G-CSF receptor in patients with blast crisis of chronic myeloid leukemia or de novo acute leukemia. Leukemia. 1997 Jul;11(7):1005–1008. doi: 10.1038/sj.leu.2400697. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Dale D. C., Bonilla M. A., Davis M. W., Nakanishi A. M., Hammond W. P., Kurtzberg J., Wang W., Jakubowski A., Winton E., Lalezari P. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood. 1993 May 15;81(10):2496–2502. [PMC free article] [PubMed] [Google Scholar]
- Dong F., Brynes R. K., Tidow N., Welte K., Löwenberg B., Touw I. P. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. N Engl J Med. 1995 Aug 24;333(8):487–493. doi: 10.1056/NEJM199508243330804. [DOI] [PubMed] [Google Scholar]
- Dong F., Hoefsloot L. H., Schelen A. M., Broeders C. A., Meijer Y., Veerman A. J., Touw I. P., Löwenberg B. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4480–4484. doi: 10.1073/pnas.91.10.4480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dong F., van Buitenen C., Pouwels K., Hoefsloot L. H., Löwenberg B., Touw I. P. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. Mol Cell Biol. 1993 Dec;13(12):7774–7781. doi: 10.1128/mcb.13.12.7774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukunaga R., Ishizaka-Ikeda E., Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell. 1993 Sep 24;74(6):1079–1087. doi: 10.1016/0092-8674(93)90729-a. [DOI] [PubMed] [Google Scholar]
- Gregg X. T., Prchal J. T. Erythropoietin receptor mutations and human disease. Semin Hematol. 1997 Jan;34(1):70–76. [PubMed] [Google Scholar]
- Guba S. C., Sartor C. A., Hutchinson R., Boxer L. A., Emerson S. G. Granulocyte colony-stimulating factor (G-CSF) production and G-CSF receptor structure in patients with congenital neutropenia. Blood. 1994 Mar 15;83(6):1486–1492. [PubMed] [Google Scholar]
- Homburg C. H., de Haas M., von dem Borne A. E., Verhoeven A. J., Reutelingsperger C. P., Roos D. Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood. 1995 Jan 15;85(2):532–540. [PubMed] [Google Scholar]
- Hug B. A., Wesselschmidt R. L., Fiering S., Bender M. A., Epner E., Groudine M., Ley T. J. Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3. Mol Cell Biol. 1996 Jun;16(6):2906–2912. doi: 10.1128/mcb.16.6.2906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOSTMANN R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl. 1956 Feb;45(Suppl 105):1–78. [PubMed] [Google Scholar]
- Klingmüller U., Lorenz U., Cantley L. C., Neel B. G., Lodish H. F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell. 1995 Mar 10;80(5):729–738. doi: 10.1016/0092-8674(95)90351-8. [DOI] [PubMed] [Google Scholar]
- Koopman G., Reutelingsperger C. P., Kuijten G. A., Keehnen R. M., Pals S. T., van Oers M. H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994 Sep 1;84(5):1415–1420. [PubMed] [Google Scholar]
- Kralovics R., Indrak K., Stopka T., Berman B. W., Prchal J. F., Prchal J. T. Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood. 1997 Sep 1;90(5):2057–2061. [PubMed] [Google Scholar]
- Kyas U., Pietsch T., Welte K. Expression of receptors for granulocyte colony-stimulating factor on neutrophils from patients with severe congenital neutropenia and cyclic neutropenia. Blood. 1992 Mar 1;79(5):1144–1147. [PubMed] [Google Scholar]
- Liu F., Poursine-Laurent J., Wu H. Y., Link D. C. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood. 1997 Oct 1;90(7):2583–2590. [PubMed] [Google Scholar]
- Liu F., Wu H. Y., Wesselschmidt R., Kornaga T., Link D. C. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996 Nov;5(5):491–501. doi: 10.1016/s1074-7613(00)80504-x. [DOI] [PubMed] [Google Scholar]
- Lord B. I., Bronchud M. H., Owens S., Chang J., Howell A., Souza L., Dexter T. M. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9499–9503. doi: 10.1073/pnas.86.23.9499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lord B. I., Molineux G., Pojda Z., Souza L. M., Mermod J. J., Dexter T. M. Myeloid cell kinetics in mice treated with recombinant interleukin-3, granulocyte colony-stimulating factor (CSF), or granulocyte-macrophage CSF in vivo. Blood. 1991 May 15;77(10):2154–2159. [PubMed] [Google Scholar]
- Lowell C. A., Fumagalli L., Berton G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol. 1996 May;133(4):895–910. doi: 10.1083/jcb.133.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mempel K., Pietsch T., Menzel T., Zeidler C., Welte K. Increased serum levels of granulocyte colony-stimulating factor in patients with severe congenital neutropenia. Blood. 1991 May 1;77(9):1919–1922. [PubMed] [Google Scholar]
- Price T. H., Chatta G. S., Dale D. C. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996 Jul 1;88(1):335–340. [PubMed] [Google Scholar]
- Rausch O., Marshall C. J. Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras-dependent activation of the JNK/SAPK mitogen-activated protein kinase pathway. Mol Cell Biol. 1997 Mar;17(3):1170–1179. doi: 10.1128/mcb.17.3.1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts A. W., Foote S., Alexander W. S., Scott C., Robb L., Metcalf D. Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood. 1997 Apr 15;89(8):2736–2744. [PubMed] [Google Scholar]
- Sandoval C., Parganas E., Wang W., Ihle J. N., Adams-Graves P. Lack of alterations in the cytoplasmic domains of the granulocyte colony-stimulating factor receptors in eight cases of severe congenital neutropenia. Blood. 1995 Feb 1;85(3):852–853. [PubMed] [Google Scholar]
- Tapley P., Shevde N. K., Schweitzer P. A., Gallina M., Christianson S. W., Lin I. L., Stein R. B., Shultz L. D., Rosen J., Lamb P. Increased G-CSF responsiveness of bone marrow cells from hematopoietic cell phosphatase deficient viable motheaten mice. Exp Hematol. 1997 Feb;25(2):122–131. [PubMed] [Google Scholar]
- Tidow N., Pilz C., Teichmann B., Müller-Brechlin A., Germeshausen M., Kasper B., Rauprich P., Sykora K. W., Welte K. Clinical relevance of point mutations in the cytoplasmic domain of the granulocyte colony-stimulating factor receptor gene in patients with severe congenital neutropenia. Blood. 1997 Apr 1;89(7):2369–2375. [PubMed] [Google Scholar]
- Van Zant G., Shultz L. Hematologic abnormalities of the immunodeficient mouse mutant, viable motheaten (mev). Exp Hematol. 1989 Feb;17(2):81–87. [PubMed] [Google Scholar]
- Welte K., Dale D. Pathophysiology and treatment of severe chronic neutropenia. Ann Hematol. 1996 Apr;72(4):158–165. doi: 10.1007/s002770050156. [DOI] [PubMed] [Google Scholar]
- Ziegler S. F., Bird T. A., Morella K. K., Mosley B., Gearing D. P., Baumann H. Distinct regions of the human granulocyte-colony-stimulating factor receptor cytoplasmic domain are required for proliferation and gene induction. Mol Cell Biol. 1993 Apr;13(4):2384–2390. doi: 10.1128/mcb.13.4.2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Koning J. P., Schelen A. M., Dong F., van Buitenen C., Burgering B. M., Bos J. L., Löwenberg B., Touw I. P. Specific involvement of tyrosine 764 of human granulocyte colony-stimulating factor receptor in signal transduction mediated by p145/Shc/GRB2 or p90/GRB2 complexes. Blood. 1996 Jan 1;87(1):132–140. [PubMed] [Google Scholar]
- de la Chapelle A., Träskelin A. L., Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4495–4499. doi: 10.1073/pnas.90.10.4495. [DOI] [PMC free article] [PubMed] [Google Scholar]